Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovation dank Simulation: Mobilfunk & mehr mit magnetischen Nanokomponenten

02.12.2010
Neue Anwendungsgebiete für magnetische Nanostrukturen dank Simulationssoftware der FH St. Pölten

Kleine magnetische Nanobauteile können in der Zukunft große Anwendungsfelder finden - und die Fachhochschule St. Pölten liefert mit einer anspruchsvollen Simulations-Software die Basis dafür.

Als Partnerin in einem Kooperationsprojekt der TU Wien mit der Universität Paris Sud trägt sie so dazu bei, die Grundlagen für Mobilfunkgeräte und Sensoren einer neuen Generation zu schaffen. Ziel des Projekts ist zum einen ein besseres Verständnis magnetischer Prozesse und zum anderen ein anwendungsorientierter Einsatz - in Form von speziellen Generatoren für die Erzeugung von Mikrowellen-Strahlung und magnetischen Sensoren im platzsparenden "Nano-Design". Ihre Entwicklung basiert auf Prozessen, die bisher nicht ausreichend berechenbar waren. Ein Hindernis, das nun mit der Expertise für Simulation an der FH St. Pölten beseitigt wird.

Miniaturisierung ist keine Kleinigkeit. Eine große Herausforderung ist sie vor allem für die Kommunikationstechnologie. Dem Wunsch nach immer mehr Funktionalität auf immer kleinerem Raum sind physikalische Grenzen gesetzt. Durch besseres Verständnis und optimales Nutzen von Materialeigenschaften finden sich jedoch noch neue Möglichkeiten zur Miniaturisierung. Ein Team um Prof. Dr. Thomas Schrefl, Leiter des Master-Studiengangs "Industrial Simulation" der Fachhochschule St. Pölten, ist der Zukunft immer einen Schritt voraus - dank seiner Expertise in der Simulation von magnetischen Materialeigenschaften.

In einem aktuellen Projekt der TU Wien ist sein Know-how als Kooperationspartner nun ganz besonders gefragt. Denn hier geht es um die Entwicklung magnetischer Generatoren, die elektronische Strahlung im Mikrowellenbereich erzeugen sollen und in den Handys der Zukunft ihre Anwendung finden werden. Ein weiteres Entwicklungsziel ist ein Prototyp für magneto-elastische Sensoren mit breiten Anwendungsmöglichkeiten.

SPIN DOCTOR
Doch für die Konzipierung dieser konkreten Produkte müssen erst allgemeine Erkenntnisse über magnetische Prozesse gewonnen werden. Dazu Prof. Schrefl: "Wenn wir magnetische Materialien besser verstehen, können wir ihre besonderen Effekte optimal nutzen. Dann können wir Bauteile verkleinern und energiesparender auslegen. Im konkreten Fall befassen sich die Kooperationspartner der TU Wien mit dem Spin-torque und dem magnetischen Widerstand. Beide Vorgänge stehen im Zusammenhang mit dem Spin von Elektronen. Dabei handelt es sich um eine quantenmechanische Größe des Elektrons, mit der ein magnetisches Moment verbunden ist. Wenn wir diese Vorgänge kontrollieren, dann können wir winzige, regelbare Giga-Hertz-Oszillatoren für den Mobilfunk ebenso entwickeln, wie magnetische Sensoren, die völlig ohne Stromversorgung oder sonstige elektronische Bauelemente auskommen."
PIONIERLEISTUNG
Damit wird technologisches Neuland beschritten das zunächst "kartographiert" werden muss. Genau das ermöglicht das aktuelle Projekt, das vom Wiener Wissenschafts-, Forschungs- und Technologiefonds WWTF mit über einer halben Million Euro gefördert wird. In diesem Projekt soll die mathematische Beschreibung des Spin-torques und des magnetischen Widerstands erweitert werden. Tatsächlich sind trotz beachtlicher Fortschritte in letzter Zeit die bisherigen Modelle unvollständig und damit für konkrete, technische Anwendungen ungeeignet.

Wer mit den magnetischen Prozessen wirklich "etwas machen will", der muss sie genauer beschreiben und ihr Verhalten unter spezifischen Bedingungen verstehen. Daher gliedert sich das Projekt in mehrere aufeinander aufbauende Teilprojekte, wie Dr. Gino Hrkac vom Institut für Analysis und Scientific Computing der TU Wien erläutert: "Mathematiker werden sowohl den Spin-torque als auch den magentischen Widerstand numerisch genauer beschreiben als je zuvor. Auf Basis dieser Daten entwickeln wir eine Simulations-Software. Das Tool ermöglicht den Physikern ein besseres Verständnis der zugrunde liegenden Mechanismen. Darauf aufbauend können nun die Ingenieure im Projekt-Team Prototypen bilden und Bauvorschriften entwickeln." Zu den Prototypen des Projekts zählt ein winziger Giga-Hertz-Oszillator, der die Frequenz eines Mobilgerätes im Bereich von 5 - 40 Giga-Hertz regelbar macht und optimal in bestehende Geräte integriert werden könnte.

Dieses Projekt zeichnet besonders aus, dass der klare Fokus auf der technischen Anwendung liegt und gleichzeitig fundemtale Erkenntnisse zu Eigenschaften magnetischer Materialien geschaffen werden. Prof. Schrefl ergänzt: "Das Projekt bietet damit vielleicht auch ein gelungenes Beispiel für eine Kombination grundlegender universitärer Wissenschaft mit dem anwendungsorientierten Forschergeist einer österreichischen Fachhochschule."

Über die Fachhochschule St. Pölten
Die Fachhochschule St. Pölten ist Anbieterin praxisbezogener und leistungsorientierter Hochschulausbildung in den Bereichen Technologie, Wirtschaft und Gesundheit & Soziales. In mittlerweile 14 Studiengängen werden mehr als 1800 Studierende betreut. Neben der Lehre widmet sich die FH St. Pölten intensiv der Forschung. Die wissenschaftliche Arbeit erfolgt innerhalb der Studiengänge sowie in eigens etablierten Instituten, in denen laufend praxisnahe und anwendungsorientierte Forschungsprojekte entwickelt und umgesetzt werden.
Wissenschaftlicher Kontakt:
Prof. Dr. Thomas Schrefl
Fachhochschule St. Pölten
Leiter des Master-Studiengangs Industrial Simulation Matthias Corvinus-Str. 15 3100 St. Pölten T +43 / (0)2742 / 313 228 - 313 E thomas.schrefl@fhstp.ac.at W http://www.fhstp.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8 1090 Wien T +43 / (0)1 / 505 70 44 E contact@prd.at W http://www.prd.at

Michaela Kaiserlehner | PR&D
Weitere Informationen:
http://www.fhstp.ac.at
http://www.fhstp.ac.at/ueberuns/presse/presseaussendungen

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Vom Gehirn zur Robotik: Algorithmen verarbeiten Sensordaten wie das Gehirn
25.09.2017 | Universität Ulm

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie