Honigwabengitter und Quantencomputer

Übergangsmetalloxide

Eine einzelne Schicht aus Kohlenstoffatomen, geordnet in einem Honigwabengitter – Graphen fasziniert Wissenschaft und Industrie. Als noch vielversprechender könnte sich allerdings ein anderes Material erweisen, sogenannte Übergangsmetalloxide, dies belegen quantenmechanische Simulationen aus der Arbeitsgruppe von Professor Dr. Rossitza Pentcheva vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE). Ihre Ergebnisse erschienen jetzt in zwei renommierten Fachmagazinen.

Buchstäblich neue Welten können sich in der physikalischen Festkörperforschung an den Rändern von Materialien auftun: Wenn Perowskite, also Oxide, die aus Sauerstoff, Metallionen und seltenen Erdelementen bestehen, entlang ungewöhnlicher kristallographischer Richtung aufgewachsen werden, bilden je zwei Metallschichten ein gebogenes Honigwabengitter, ähnlich wie in Graphen.

Wegen ihrer stark wechselwirkenden Elektronen bieten diese Übergangsmetalloxide ganz neue Chancen, da sie verschiedene magnetische und elektronische Zustände einnehmen können. Seit kurzem ist es nun möglich, dieses Gitter in einer Heterostruktur zu realisieren, wie Experimente aus den USA und China zeigen.

„Diese Honigwabenstruktur kombiniert mit den Möglichkeiten eines Oxids ist eine Spielwiese sowohl für die Grundlagenforschung wie auch für Anwendungen, weil ganz neue, einzigartige Eigenschaften realisiert werden können“, erklärt Pentcheva. Für die nötigen Simulationen „füttert“ die Expertin für computergestützte Materialphysik ihren Rechner mit Informationen über die Kristallstruktur und chemische Elemente des Materials und lässt ihn anschließend die elektronische Struktur und magnetische Eigenschaften berechnen.

Durch die systematische Untersuchung chemisch miteinander verwandter Elemente, wie zum Beispiel Titan, Eisen oder Kobalt, fand sie heraus, dass Lanthanmanganat unter bestimmten Bedingungen als eine Art topologischer Isolator fungieren kann: Während diese im Innern isolierend sind, erlauben sie gleichzeitig auf ihrer Oberfläche die Bewegung von Ladungen, leiten hier also den elektrischen Strom. Zudem sind sie magnetisch und deshalb nicht auf ein externes Magnetfeld angewiesen. Damit würde das Material für künftige Anwendungen wie dem Quantencomputer noch vielversprechender sein als das momentan hochgehandelte Graphen oder andere Materialien, die eine viel zu kleine Bandlücke aufweisen und oft toxisch sind.

Pentchevas Ergebnisse helfen somit nicht nur, die Messdaten der amerikanischen und chinesischen Kollegen zu interpretieren. Vielmehr werfen sie ein Schlaglicht auf vielversprechende Materialkombinationen für zukünftige Experimente und Anwendungen. „In der Theorie haben wir die entscheidenden Eigenschaften für diese exotischen Systeme vorhergesagt, nun sind wir gespannt auf die experimentelle Umsetzung“, freut sich Pentcheva, deren Projekt durch die Deutsche Forschungsgemeinschaft (DFG) im SFB/TR80 gefördert wird.

Weitere Informationen: Prof. Dr. Rossitza Pentcheva, Fakultät für Physik, Tel. 0203/ 379-2238, rossitza.pentcheva@uni-due.de

Redaktion:
Birte Vierjahn, Tel. 0203/ 379-8176, birte.vierjahn@uni-due.de
Steffi Nickol, Tel. 0203/ 379-8177, steffi.nickol@uni-due.de

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165145
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.056801

Media Contact

Beate Kostka M.A. idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer