Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Handy als Lebensretter - Autos orten Fußgänger

20.01.2014
Forscher der Technischen Universität München (TUM) haben ein Verfahren entwickelt, mit dem Fahrerassistenzsysteme im Auto Fußgänger und Fahrradfahrer orten können – selbst dann, wenn sie durch große Hindernisse verdeckt werden.

Dabei könnten bald die Mobiltelefone der Fußgänger und Radfahrer als Transponder dienen. Das Ortungssystem im Auto berechnet die Bewegungsbahn des Transponders voraus und leitet notfalls eine Vollbremsung ein, wenn sich ein Fußgänger oder Radfahrer direkt vors Auto bewegt.


Das funkbasierte Sensorsystem kann Fußgänger auch dann orten, wenn sie durch Hindernisse verdeckt sind. Bild: Ko-TAG

Ein Auto fährt mit Tempo 30 durch ein Wohngebiet. Rechts stehen parkende Fahrzeuge am Straßenrand. Plötzlich taucht hinter einem großen Anhänger ein Fußgänger auf. Unmittelbar vor dem Passanten kommt der Wagen zum Stehen. Hätte das Ortungssystem des Fahrzeugs nicht eingegriffen, wäre der Fußgänger vom Auto erfasst worden.

Der Fußgänger hatte in diesem Versuch einen so genannten Transponder bei sich. Ein Transponder ist ein Funksender und -empfänger, der auf bestimmte Signale antwortet. In diesem Fall auf das Ortungssystem in dem sich nähernden Auto. Dabei wird für die genaue Lokalisierung des Fußgängers dessen Abstand und Winkel zum fahrenden Auto gemessen.

Im Rahmen des Forschungsprojektes „Kooperative Transponder“, Ko-TAG, haben Professor Erwin Biebl und sein Team an der TU München dafür einen ganz neuen Ansatz zur Abstandsmessung entwickelt, mit dem die Entfernung innerhalb weniger Mikrosekunden (Millionstel Sekunde) auf wenige Zentimeter genau gemessen wird. Um das zu erreichen, sendet das Ortungssystem im Auto eine einzigartige Code-Folge an den Transponder. Dieser modifiziert die Code-Folge und schickt sie in einem sehr präzisen zeitlichen Schema zurück.

Sicherheit und Akzeptanz durch präzise Abstandsmessung

Die Warnung an den Fahrer oder die Auslösung einer Notbremsung muss in der Regel schon erfolgen, bevor der Fußgänger die Straße betritt. Gleichzeitig muss die Wahrscheinlichkeit für unnötige Vollbremsungen extrem gering gehalten werden, damit die Fahrer das System als zuverlässig empfinden und benutzen. Eine sehr gute Bewegungsabschätzung ist daher unumgänglich.

Im Rahmen ihrer Forschungsarbeit gelang es den Wissenschaftlern, die Messfehler bis auf wenige Pikosekunden (Billionstel Sekunden) zu reduzieren. „Wir erreichen damit für die Abstandsmessung eine Genauigkeit von wenigen Zentimetern. Zusammen mit dem ebenfalls einzigartigen codebasierten Verfahren ist das der Grund für die außergewöhnliche Performanz und ein wesentliches Alleinstellungsmerkmal unseres Systems“, sagt Professor Biebl.

Ortung durch Hindernisse bisher nicht möglich

Das Besondere an der „Kooperativen Sensorik“, wie das Ortungssystem bei Ko-TAG heißt, ist, dass schwächere Verkehrsteilnehmer wie Fußgänger und Radfahrer damit auch geortet werden können, wenn sie durch Hindernisse verdeckt sind. Darüber hinaus können sie mit der kooperativen Sensorik eindeutig als solche erkannt und ihr Bewegungsverhalten vorausgesagt werden. Das ist mit bisherigen Fahrerassistenzsystemen im Auto nicht möglich.

Die kleinen Sender können in Kleidung oder Schulranzen integriert werden. Als Transponder könnte in Zukunft aber auch das Handy dienen, denn ein Großteil der Menschen trägt es ohnehin ständig bei sich. Es bedarf lediglich kleiner Änderungen an der Geräte-Hardware. Ein großer Hersteller von Mobiltelefonen hat bereits Interesse an dem System gezeigt.

An dem vom Bundesministerium für Wirtschaft und Technologie geförderten Projekt sind neben dem Fachgebiet Höchstfrequenztechnik der Technische Universität München das Fraunhofer IIS, die BMW Forschung und Technik GmbH, die Continental Safety Engineering International GmbH, die Daimler AG, das Herinrich-Hertz-Institut der Fraunhofer Gesellschaft sowie das Steinbeis Innovationszentrum für Embedded Design und Networking beteiligt.

Kontakt:

Technische Universität München
Prof. Dr.-Ing. Erwin Biebl
Fakultät für Elektrotechnik und Informationstechnik
Fachgebiet Höchstfrequenztechnik
Arcisstr. 21, 80333 München
Tel.: + 49 89 289 25225 - E-Mail: biebl@tum.de
Weitere Informationen:
http://www.hot.ei.tum.de
Homepage des Fachgebiets für Höchstfrequenztechnik
http://www.ko-fas.de
Homepage des Forschungsprojekts

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Vom Gehirn zur Robotik: Algorithmen verarbeiten Sensordaten wie das Gehirn
25.09.2017 | Universität Ulm

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops