Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grafikkarte schlägt Supercomputer - Neue Optionen für Simulationsrechnungen

28.11.2008
Simulationsrechnungen sparen Ingenieuren viel Zeit. Doch mit komplexeren Berechnungen sind herkömmliche Computer schnell überfordert, und Rechenzeit auf Großcomputern ist knapp und teuer.

Revolutionäre Ergebnisse einer studentischen Forschungsarbeit am Lehrstuhl für Aerodynamik der Technischen Universität München könnten dieses Problem nun lösen helfen: In dem Projekt wurden für komplexe Berechnungen handelsübliche Grafikkarten eingesetzt. Mit dem Resultat, dass sich teure Supercomputer um Längen geschlagen geben müssen.

Eine Forschungsaufgabe am Lehrstuhl für Aerodynamik der Technischen Universität München (TUM) ist die Untersuchung der Nachlaufwirbel an Fahrzeugen. Diese schlucken Energie, verursachen Lärm und Vibrationen. Wesentliches Werkzeug dieser Forschung ist die numerische Strömungssimulation (Computational Fluid Dynamics, CFD). "Mit CFD werden strömungsmechanische Probleme numerisch simuliert, wodurch CFD eine wichtige Ergänzung zu Windkanalversuchen, insbesondere für physikalisch komplexe Strömungen, ist", erläutert Prof. Dr.-Ing. Nikolaus A. Adams, Ordinarius am Lehrstuhl für Aerodynamik an der TU München.

"Eine typische Simulation an einem stark vereinfachten Fahrzeugmodell besteht aus 48 Millionen dreidimensionaler Volumenelemente und benötigt mehr als 102.000 Zeitschritte. Ein mehrere hunderttausend Euro teurer Supercomputer braucht für die vollständige Berechnung einer solchen Simulation knapp 60 Stunden", erklärt Dr.-Ing. Thomas Indinger, Leiter der Automobilaerodynamik am Lehrstuhl von Professor Adams.

Die gleiche Aufgabe lässt sich aber auch sehr viel schneller erledigen - und zwar auf einem System, das lediglich ein- bis zweitausend Euro kostet. Das Geheimnis dieses preiswerten Temporausches: Die Simulationen werden mit Hilfe von herkömmlichen Grafikkarten durchgeführt. Grafikprozessoren (Graphics Processing Unit, GPU) können aufgrund ihrer massiv-parallelen Architektur berechnungsintensive Aufgaben um ein Vielfaches schneller erledigen als herkömmliche Hauptprozessoren (Central Processing Unit, CPU).

Die Idee dazu hatte Eugen Riegel, Student der Luft- und Raumfahrt im 8. Semester. In der Computer-Zeitschrift c't las er einen Beitrag über den Einsatz von Grafikprozessoren in Wissenschaft und Forschung sowie um die für Grafikkarten entwickelte Programmiersprache CUDA. "Ich habe dann die Simulationsberechnungen mit einer Grafikkarte NVIDIA GeForce 8800 GT mit 512 Mbyte Speicher zum Thema meiner Semesterarbeit gemacht", berichtet er. Das Ergebnis war verblüffend: Mit Hilfe der Mittelklassen-Grafikkarte, die bereits ab 100 Euro erhältlich ist, konnte Riegel die Berechnungen im Vergleich zur konventionellen Vorgehensweise mit Nutzung der CPU auf das 7-Fache beschleunigen.

Basis für den Einsatz von GPUs als Hochleistungsrechensystem ist ihre freie Programmierbarkeit - eine Eigenschaft, die in der Vergangenheit nur Hauptprozessoren besaßen. Um auch Grafikprozessoren programmieren zu können, entwickelte NVIDIA die auf C/C++ basierende Programmiersprache CUDA (Compute Unified Device Architecture). CUDA ist frei zugänglich, das Unternehmen stellt die Software kostenlos zum Download zur Verfügung. Die hohe Rechenleistung der Grafikkarten entsteht durch das Parallelisieren vieler Datenverarbeitungseinheiten auf dem Grafikchip, wodurch im Vergleich zu herkömmlichen CPUs sehr viel mehr Transistoren für die Berechnung zur Verfügung stehen.

Dr.-Ing. Thomas Indinger betreute die Forschungsarbeit. Auch er sieht im Einsatz von Grafikprozessoren in Wissenschaft und Forschung ein hohes Potenzial: "Die Arbeit hat gezeigt, dass Grafikprozessoren aufgrund ihrer massiv-parallelen Architektur berechnungsintensive Aufgaben um ein Vielfaches schneller erledigen können als herkömmliche Hauptprozessoren. Gerade in Bereichen, in denen daten- und rechenintensive Grundlagenforschung betrieben wird, sehen wir deshalb große Chancen für eine zunehmende Verbreitung von GPU-Lösungen."

Die TU München und NVIDIA haben nun eine Kooperation beschlossen. NVIDIA stellt dem Lehrstuhl für Aerodynamik Grafikprozessoren aus der High-Performance-Computing-Produktlinie Tesla zur Verfügung, die für den Dauereinsatz im professionellen Umfeld konzipiert ist. Die Prozessoren verfügen über bis zu 4 GB Speicher und bieten eine Rechenleistung von 1 Teraflops. An der TU München werden demnächst Strömungssimulationen mit einem Tesla-System durchgeführt. Das Ziel der TUM-Wissenschaftler: Die Beschleunigung der Berechnungen um das 40-Fache.

Kontakt:
Dr.-Ing. Thomas Indinger
Technische Universität München
Fakultät für Maschinenwesen
Lehrstuhl für Aerodynamik
Boltzmannstr. 15
85748 Garching
Tel.: +49(0)89-289-16135
Fax: +49(0)89-289-16139
Thomas.Indinger@tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.aer.mw.tum.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Cybersicherheit für die Bahn von morgen
24.03.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise