Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was geschieht mit Flugzeugen, wenn die Strömung abreißt?

16.06.2010
Forscher simulieren den Moment des „Stall“ am Computer

Ein Flugzeug hält sich durch einen kontinuierlichen Verlauf der Strömung am Flügel in der Luft. Überziehen oder „Stall“ nennen Experten den Moment, wenn die Strömung um Tragflügel oder Triebwerk abreißt und es zu Verwirbelungen kommt. Dieses Überziehen zu berechnen galt lange Zeit aufgrund der komplexen und chaotisch anmutenden Vorgänge als nahezu unmöglich. Mithilfe von Hochleistungsrechnern wollen Wissenschaftler der DFG-Forschergruppe „Simulation des Überziehens von Tragflügeln und Triebwerksgondeln“ (FOR 1066) eben diese Prozesse simulieren.

Im Rahmen eines internationalen Symposiums an der Technischen Universität Braunschweig ziehen Experten aus Großbritannien, Frankreich, Italien und Deutschland am 22. und 23 Juni 2010 an der Technischen Universität Braunschweig Bilanz.

Bei Flugzeugen kann die Strömung zum Beispiel bei zu langsamem Flug oder bei besonderen Wettersituationen abreißen. Die Piloten müssen dann schnell reagieren, damit das Flugzeug nicht abrupt absackt oder seine Steuerbarkeit verliert. Entsprechende Warnsysteme sorgen in der Regel dafür, dass es gar nicht so weit kommt. Diesen Moment des „Stall“ an echten Transportflugzeugen unter den realen Bedingungen eines Landeanflugs zu testen, ist aufgrund der hohen Sicherheitsrisiken und Kosten ausgeschlossen.

Der „Stall“ ist eines der physikalischen Phänomene, die den Möglichkeiten des Fliegens enge Grenzen setzen. „Wenn es uns gelänge, diese Grenzen in Zukunft bei gleicher Flugsicherheit zu erweitern, könnte das Fliegen wirtschaftlicher und umweltfreundlicher werden“, erläutert Prof. Rolf Radespiel, Sprecher der Forschergruppe. „Wir wollen daher das Verhalten von Transportflugzeugen an diesen Flugbereichsgrenzen so weit wie möglich verstehen.“ Die neueste Generation der Hochleistungsrechner und Simulationsmethoden macht es möglich. Die Forschergruppe erarbeitet eine wissenschaftlich fundierte Methode, um die Grenzphänomene beim Überziehen am Computer genauestens nachzustellen. Sie untermauert diese Ergebnisse dann mit den Daten aus aktuellen Experimenten. Die Wissenschaftler untersuchen die Entstehung und Auswirkungen des Überziehens an den Tragflügeln und im Triebwerk, wo die Verwirbelungen zu hohen Belastungen führen können. Erstmals betrachten sie nicht nur, was geschieht, wenn ein Flugzeug zu langsam fliegt, sondern nehmen auch die Auswirkungen von wetterbedingten Störungen ins Visier.

Die Forschergruppe wird von der Deutschen Forschungsgemeinschaft in einer ersten Arbeitsperiode über drei Jahre mit insgesamt 1,8 Millionen Euro gefördert. In zwei Transferprojekten sind auch die Unternehmen Rolls-Royce-Deutschland und Airbus mit eigenen finanziellen Mitteln beteiligt.

Kontakt:

Professor Dr.-Ing. Rolf Radespiel
Institut für Strömungsmechanik
Sprecher der DFG-Forschergruppe FOR 160
Technische Universität Braunschweig
Bienroder Weg 3, 38106 Braunschweig
Tel. Nr.: +49 531 391 2970
E-Mail: r.radespiel@tu-braunschweig.de

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.tu-braunschweig.de/ism
http://www.for1066.tu-bs.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics