Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnähnliche Computer rücken näher

29.06.2011
Phasenwechselmaterialien können gleichzeitig rechnen und speichern

Forschern an der University of Exeter ist ein großer Schritt in Richtung gehirnähnlichen Computern gelungen. Den Schlüssel dazu bilden Phasenwechselmaterialien (phase-change materials, PCM), die bislang vor allem als Nachfolger für Flash-Speicher gehandelt wurden. Das Team konnte erstmals nachweisen, dass eine PCM-Zelle gleichzeitig Daten verarbeiten und speichern kann - im Unterschied zu heutigen Computern, bei denen Prozessor und Speicher getrennte Einheiten sind.

Zudem können PCM-Zellen quasi als Neuronen und Synapsen fungieren. " Wenn es gelingt, ein hochgradig verschaltetes System solcher Synapsen und Neuronen zu konstruieren, ergäbe das ein einfaches phasenwechsel-basierts 'Gehirn'", meint David Wright, Professor für Elektro- und Computertechnik in Exeter, gegenüber pressetxt. Sein Team plant bereits eine Konzeptdemonstration, wenngleich vorerst in sehr kleinem Maßstab.

Rechnender Speicher
In den letzten Jahren haben Phasenwechselmaterialien nicht zuletzt durch die Arbeit von IBM und Intel einen gewissen Bekanntheitsgrad erreicht - allerdings nur als Speichertechnologie. Wie die Forscher aus Exeter im Journal Advanced Materials berichten, konnten sie zeigen, dass mit PCMs zugleich Berechnungen in den vier Grundrechnungsarten möglich sind. Weiters ist ein Hardware-Neuron aus einer PCM-Zelle zu fertigen und eine auch die Funktion einer Synapse nachzubilden. Das nötige Design ist laut Wright viel einfacher, als das mit Silizium-Technologie möglich wäre.

Interessant ist die Entwicklung deshalb, weil das dem Gehirn viel ähnlichere Computer in Aussicht stellt. Denn das Geflecht aus Neuronen und Synapsen im biologischen Vorbild ist sowohl für biologischen als auch Erinnerung zuständig. Bei bisherigen Computern sind die entsprechenden Funktionen physisch klar getrennt. Der Prozessor führt Berechnungen aus, doch müssen Daten laufend im Arbeitsspeicher oder längerfristig auf der Festplatte abgelegt werden, damit sie der Rechner nicht "vergisst".

Zukunftstechnologie
Im Prinzip sollten sich mittels PCMs Systeme realisieren lassen, die ähnlich wie das biologische Vorbild lernen und sich anpassen können. "Wir planen in Exeter als nächstes einen sehr kleinen Demonstrator, mit vielleicht zehn bis 100 verbundenen Zellen, für einfache Aufgaben wie Objekterkennung oder das Lösen von Labyrinthen", sagt Wright. Wenn die Arbeit wie geplant verläuft, werden kommendes Jahr die Ergebnisse der Experimente vorliegen.

"Einige kleine, spezialisierte 'nuromorphe' Computer mit PCM-Zellen könnten schon in naher Zukunft in Laboren entstehen", so der Wissenschaftler. Bis zu gehirnähnlichen Allzweckcomputer ist der Weg aber wohl noch weit. Für den technologischen Ansatz spricht dabei, dass die PCM-Elemente theoretisch sowohl mit elektrischen als auch optischen Signalen funktionieren - also sowohl in Verbindung mit klassischer Elektronik als auch in künftigen optischen Computern.

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://www.exeter.ac.uk

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schnelle Time-to-Market durch standardisierte Datacenter-Container
28.03.2017 | Rittal GmbH & Co. KG

nachricht Modellfabrik Industrie 4.0: Forschungs- und Trainingsplattform für Wissenschaft und Wirtschaft
28.03.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit