Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fräsen und bohren im Cyberspace

01.12.2009
Zerspannungsmechaniker, NC-Programmierer oder Mechatroniker – Lehrlinge in Ingenieurberufen müssen oft komplexe Anlagen beherrschen. Ob Fräsen, Drehen, Bohren oder Programmieren: Künftig sollen Lehrlinge am virtuellen Modell üben und Routine erlernen.

Vorsichtig spannt der Lehrling das Werkstück in die Drehmaschine. Bevor er das Bauteil bearbeiten kann, muss er die Maschine richtig programmieren. Eine knifflige Aufgabe. Bei seiner Abschlussprüfung wird der Lehrling eine ähnliche Aufgabe lösen müssen.

Deshalb lernt er an der Berufsschule, wie man mit so einer Anlage umgeht. Dabei steht er aber nicht vor einer richtigen Maschine – er sitzt vor dem Computer. Auf dem Bildschirm erscheinen die Bedienfelder, dahinter die Drehmaschine. Und der PC leitet den Lehrling Schritt für Schritt an.

Das Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF, das Technologie- und Berufsbildungszentrum TBZ Magdeburg sowie die Schweißtechnische Lehr- und Versuchsanstalt SLV Halle haben das Projekt ViReKon ins Leben gerufen – koordiniert vom Rationalisierungs- und Innovationszentrums RKW Sachsen-Anhalt: Ingenieure sollen mit Hilfe von Virtueller Realität VR ausgebildet werden. Dafür entwickeln die Forscher des IFF virtuelle Modelle verschiedener Maschinen. »Für die praktische Ausbildung nutzt das TBZ derzeit ein einfaches Modell einer realen Sortieranlage. An dieser können die Lehrlinge allerdings nur wenige Aufgaben üben«, sagt André Winge, Gruppenleiter am IFF. »An den virtuellen Anlagen aber können angehende Mechatroniker, Programmierer oder Mechaniker ganz speziell geschult werden und eine ganze Reihe verschiedener Aufgabenstellungen trainieren.« Dazu erarbeiten die Experten des IFF zusammen mit den Berufsausbildern spezielle E-Learning-Methoden. »Der Lehrling soll nicht nur die Maschine und die Steuerungseinheit bedienen können«, sagt Winge. »Ein integriertes, didaktisches Trainingskonzept erläutert dem Schüler die Arbeitsaufgaben. Das System kontrolliert den Erfolg und gibt Feedback, ob er die einzelnen Aufgaben auch richtig gelöst hat.«

Ein weiterer Vorteil: Berufsschulen müssen sich keine teuren Anlagen anschaffen. Im Cyberspace kann gedreht, gebohrt oder gefräst werden – an großen wie an kleinen Maschinen. »Wir können für jede Anlage ein virtuelles Modell entwerfen«, sagt Winge. So haben die Forscher zum Beispiel auch ein VR-Modell einer Biohandlinganlage erstellt: Petrischalen mit Bakterienkulturen laufen über ein Förderband. Ein Greifer packt sie und befördert sie in die Entnahmestation. Dort entnimmt eine Pipettier-Einheit eine Probe und verarbeitet sie weiter. Am Bildschirm verfolgt der Lehrling die Prozedur in der virtuellen Anlage – die Steuerungseinheit, die er dabei benutzt, ist real. An so einem VR-System können künftig auch Fachkräfte oder Wartungsmechaniker in Unternehmen geschult werden.

Andre Winge | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2009/12/virekon.jsp

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Vom Gehirn zur Robotik: Algorithmen verarbeiten Sensordaten wie das Gehirn
25.09.2017 | Universität Ulm

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten