Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung braucht den Riesenrechner

09.10.2009
Rechenzentrum nimmt Großrechner in Betrieb – Physiker, Biogeografen und Geowissenschaftler nutzen ihn

Die Universität Bayreuth nahm am Donnerstag einen Linux-Cluster für High Performance Computing in Betrieb. Er dient den Wissenschaftlern Professor Martin V. Axt, Professor Stephan Kümmel und Professor Walter Zimmermann aus dem Bereich der Theoretischen Physik, dem Professor für Biogeografische Modellierung Björn Reineking sowie Professor Henri Samuel und Dr. Gerd Steinle-Neumann vom Bayerisches Geoinstitut zur Bearbeitung ihrer wissenschaftlichen Projekte.

Die Investition für den Großrechner liegt bei 570.000 Euro. An der Inbetriebnahme nahmen Vizekanzlerin Ricarda Rabenbauer und Professor Stefan Jablonski, Inhaber des Lehrstuhls Angewandte Informatik IV und Vizepräsident für Lehre und Studierende, teil.

Wie der Leiter des Rechenzentrums der Universität Bayreuth, Dr. Andreas Grandel, erklärte, arbeiten High-Performance-Computing-Cluster (HPC-Cluster) riesige und hochkomplexe Rechenaufgaben ab. „Entweder werden die Aufgaben in verschiedene Pakete aufgeteilt und parallel auf mehreren Rechenknoten des Clusters ausgeführt. Oder die Rechenaufgaben, wir sprechen von Jobs, werden auf die einzelnen Knoten verteilt“, so Grandel. HPC-Cluster eignen sich daher besonders für die Berechnung wissenschaftlicher Probleme, die parallelisierbar sind.

Im Jahr 2008 hatte die Universität Bayreuth zunächst zwei Großgeräteanträge für je einen Linux-Cluster bei der Deutschen Forschungsgemeinschaft (DFG) eingereicht. In ihrem Begutachtungsverfahren regte die DFG an, die getrennten Anträge zusammenzufassen und unter die Federführung des Rechenzentrums zu stellen. „Wir haben diesen Vorschlag gerne aufgegriffen. Dadurch entstehen Synergien“, so Grandel.

Die wichtigsten:

Den Wissenschaftlern steht mit der Zusammenfassung ein weitaus größerer HPC-Cluster für die Lösung ihrer wissenschaftlichen Probleme zur Verfügung.

Ein Cluster kann besser ausgelastet werden. Freie Kapazitäten werden anderen Arbeitsgruppen zur Verfügung gestellt.

Das Rechenzentrum stellt sicher, dass jede Arbeitsgruppe die ihr zustehende Mindestrechenleistung erhält.

Der Anteil des Rechenzentrums wird auch den nicht am Antrag beteiligten Wissenschaftlern zur Bearbeitung ihrer wissenschaftlichen Projekte zur Verfügung gestellt.

Ausschreibung und Beschaffung sind zusammengefasst worden und mussten nur einmal vorbereitet und abgewickelt werden.

Das Rechenzentrum entlastet die Wissenschaftler von Arbeiten in der Informationstechnik, die nicht zu ihren wissenschaftlichen Kernaufgaben gehören.

Der HPC-Cluster hat eine Leistungsaufnahme von 40 Kilowatt. Das entspricht dem durchschnittlichen Strombedarf von 90 Drei-Personenhaushalten. „Für die Kühlung des Clusters ist noch einmal der gleiche Energieaufwand notwendig“, erklärte der Leiter des Rechenzentrums. „Die Universität hat damit für den Betrieb des Clusters 85.000 Euro jährlich an Energiekosten zu tragen.“ Eine ausreichende Kühlung zu gewährleisten, stellt bei HPC-Cluster eine echte Herausforderung dar. Die Cluster werden in wassergekühlten Schränken betrieben. Allein der Anschluss der Schränke an das Kühlwassernetz kostete 60.000 Euro.

High Performance Computing ist für die Bearbeitung wissenschaftlicher Probleme in vielen Forschungsbereichen zwingend und daher längst auch Thema bei Berufungsverhandlungen von Professoren. Bereits jetzt liegen Berufungszusagen für weitere Cluster im Gegenwert von 1,5 Millionen Euro vor. Nicht allein das viele Geld macht die Dimension der Herausforderung aus. Erneut ist es die Kühlung, die die technische Verantwortlichen im Blick haben: Die kommenden Cluster kühl zu halten, wird in dem vorhandenen Systemraum nicht mehr möglich sein. Grandel: „Wir haben daher die Hoffnung, dass ein weiterer Rechenraum mit einer Kühlleistung von 250 Kilowatt im Neubau NW III entstehen wird.“

Hintergrund: Nutzen des neuen Clusters

Auf dem Weg zur Plastikelektronik

Der Lehrstuhl Theoretische Physik IV von Professor Stephan Kümmel wird den neuen Cluster zur Untersuchung von Molekülen und Festkörpern mit Hilfe der Dichtefunktionaltheorie einsetzen. Eines der Ziele ist das Verständnis molekularer Systeme, die effizient Licht absorbieren und die dabei eingefangene Energie weiterleiten können. Solche sogenannten molekularen Donor-Akzeptor-Systeme werden an der Universität Bayreuth intensiv untersucht, wobei es auch darum geht, effiziente Solarzellen auf Kohlenstoffbasis („Plastikelektronik“) herstellen zu können.

Ein weiterer Forschungsschwerpunkt der Arbeitsgruppe ist es, die Eigenschaften sogenannter Nanolegierungen zu verstehen. Das sind Teilchen, die aus einigen zehn bis einigen hundert Atomen zweier unterschiedlicher Metallsorten bestehen. Solche Teilchen können aufgrund ihrer geringen Größe und den daher zum Tragen kommenden Quanteneffekten spezielle Eigenschaften haben. So sind Nanolegierungen aus Gold und Platin zum Beispiel hervorragende Katalysatoren. Langfristig hofft man, mit solchen Nanoteilchen den Einsatz von unter Umweltaspekten problematischen Lösungsmitteln in der Chemie zu reduzieren. Professor Kümmel: „Dem neuen Rechencluster wird bei diesen Forschungsarbeiten eine wichtige Rolle zukommen.“

Blick in den Bauch der Erde

Professor Henri Samuel und Dr. Gerd Steinle-Neumann, beide am Bayerischen Geoinstitut, untersuchen in ihrer Forschung den Aufbau des Erdinnern mit Hilfe von Computersimulationen. Samuel nutzt Strömungsdynamik, um Verformung von Erdmaterialen und damit Materialfluss über hunderte Millionen von Jahren zu simulieren. Solche Arbeiten führen zu einem besseren Verständnis von Plattentektonik, sowie der thermischen Entwicklung der Erde über die 4,5 Milliarden Jahre ihrer Existenz. Steinle-Neumann simuliert mit Hilfe von Methoden aus der Festkörperphysik die Struktur und physikalische Eigenschaften von Erdmaterialien unter hohem Druck, wie sie im Erdinneren herrschen. Mit solchen Ergebnissen kann man den Aufbau des Erdinnern, wie er etwa in der Seismologie bestimmt wird, interpretieren.

Mehr als die Summe seiner Teile

Der Lehrstuhl für Theoretische Physik I von Professor Walter Zimmermann wird den neuen Cluster zur Untersuchung von Bewegungsformen von Nanoteilchen in Flüssigkeiten und zur Aufklärung allgemeiner Prinzipien der Selbstorgani-sation in der belebten und unbelebten Natur einsetzen.

Das Zappeln von Nanoteilchen in einer Lösung ist als Brownsche Bewegung bekannt. Werden Nanoteilchen, wie etwa DNS-Fragmente, in einer Flüssigkeit gelöst und durch hauchdünne Röhrchen transportiert, wie es in der Biotechnologie geschieht, so gibt es überraschende und noch vielfach unverstandene Verhaltensweisen. Die Aufklärung der dabei wirkenden physikalischen Mechanismen mittels Computersimulation ist eines der Ziele.

Ein weiteres Forschungsgebiet ist die Aufklärung von Prinzipien der Selbstorganisation in der Natur. Wie verhält sich eine Ansammlung von Biomolekülen, die durch Nanomotoren angetrieben zu schwarmähnlichem Verhalten führt? Folgt diese Selbstorganisation den gleichen Prinzipien wie bei anderen Musterbildungsprozessen oder bei Bakterienschwärmen? Wie beeinflussen doppelgesichtige Nanoteilchen Mischungen von zwei Flüssigkeiten und lassen sich damit neue Materialien schaffen? Dies sind einige Fragestellungen, für deren Aufklärung der Computercluster eingesetzt wird.

Technische Informationen zum HPC-Cluster:

Der neue HPC-Cluster besteht aus 142 Re-chenknoten. Die Interprozesskommunikation zwischen den Rechenknoten findet mit einer Datenrate 40 Giga-Bit pro Sekunde statt. Jeder Rechenknoten verfügt über je zwei Nehalem-Prozessoren mit je vier Rechnerkernen und 24 Giga-Byte Hauptspeicher. Das bedeutet in der Summe 1136 Rechnerkerne und 3,4 Terra-Byte Hauptspeicher. Zum Vergleich: Im Jahr 2000 wurde im Rechenzentrum der Universität Bayreuth ein Datenarchiv in Betrieb genommen, das die gleiche Plattenkapazität wie der Hauptspeicher des neuen HPC-Cluster hatte.

Kontakt:
Pressestelle der Universität Bayreuth
Frank Schmälzle
Telefon 0921/555323
E-Mail pressestelle@uni-bayreuth.de

Frank Schmälzle | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Sparsame Zeitsynchronisierung von Sensornetzen mittels Zeitreihenanalyse
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Viele glauben, Industrie 4.0 kann man kaufen
24.01.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy