Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FAU-Informatiker optimieren Hochleistungsrechnen mit Grafikkarten

16.03.2012
Informatiker des Regionalen Rechenzentrums Erlangen sowie der Lehrstühle für Multiscale Simulation, System Simulation und Rechnerarchitektur der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben sich zum Ziel gesetzt, das so genannte GPU Computing, also das wissenschaftliche Rechnen mit Grafikkarten, zu optimieren.

Unter Leitung des Zentralinstituts für Scientific Computing der FAU haben sie sich erfolgreich bei gleich zwei Förderprogrammen von Nvidia, dem Weltmarktführer im Bereich Visual und High‑Performance Computing, durchgesetzt.

Das Unternehmen unterstützt die FAU-Informatiker zum einen finanziell über einen Zeitraum von einem Jahr bei ihren Forschungen. Zum anderen stellt Nvidia der Universität besonders leistungsfähige Grafikkarten zur Verfügung. Davon profitieren vor allem die Studierenden, weil die Grafikkarten bei öffentlich zugänglichen Rechnern in einem CIP-Pool an der Technischen Fakultät installiert werden.

„Wir sprechen hier nicht von gewöhnlichen Grafikkarten, die etwa in Notebooks oder Büro-PCs eingebaut sind“, erläutert Andreas Schäfer vom Lehrstuhl für Rechnerarchitektur. „Sondern wir arbeiten mit Hochleistungsgrafikkarten, wie sie ursprünglich für Spielekonsolen entwickelt wurden.“ Durch den Boom der Computerspiele sind diese Grafikkarten extrem leistungsfähig und aufgrund der Massenproduktion auch relativ kostengünstig geworden. Während sie lange Zeit nahezu ausschließlich von der Computerspiel-Industrie genutzt wurden, setzen auch andere Unternehmen die Karten inzwischen immer häufiger ein, um die üblichen Rechenprozesse ihrer Computer zu beschleunigen.

Auf den Grafikkarten laufen eigene Programme, mit denen sie den Hauptprozessor eines Computers unterstützen können. Somit eignen sich die Karten besonders für einen Einsatz beim Hochleistungsrechnen, zum Beispiel zur Berechnung von Simulationen, wenn der Computer Millionen von Rechenleistungen binnen kürzester Zeit erbringen muss.

„Bislang sind die verschiedenen Programme auf den Grafikkarten und auf dem PC noch nicht optimal aufeinander abgestimmt“, sagt Schäfer. „Deswegen besteht unsere Aufgabe jetzt darin, die Algorithmen der Programme so zu optimieren, dass sie das Hochleistungsrechnen effizienter und schneller machen.“ Das Förderprogramm, an dem Schäfer beteiligt ist, läuft unter dem Titel CUDA Research Center und richtet sich vor allem an Wissenschaftler.

Aber auch für das CUDA Teaching Center haben die Informatiker der FAU den Zuschlag erhalten. Das ist die zweite Förderlinie von Nvidia, in die auch Studierende eingebunden werden sollen. Im Rahmen von Seminaren und Übungen, aber auch außerhalb von Lehrveranstaltungen können die Studierenden Programme für die Grafikkarten schreiben und den Umgang mit ihnen erlernen. „Früher hat das Thema GPU Computing in der universitären Lehre kaum eine Rolle gespielt, doch wir verzeichnen eine zunehmende Nachfrage aus der Industrie nach Informatikern, die sich damit auskennen“, erzählt Schäfer. „Deswegen setzen wir an der FAU schon seit Längerem einen Fokus darauf, unsere Studierenden an das Thema heranzuführen. Die Förderung durch das CUDA Teaching Center bietet dafür eine gute Möglichkeit.“

Die CUDA-Programme
CUDA ist das Akronym für Nvidias Architektur für paralleles Rechnen. CUDA ermöglicht durch den Einsatz von Grafikkarten große Leistungszuwächse. CUDA Research Center sind anerkannte Institutionen, die GPU Computing in einer Reihe von Forschungsdisziplinen nutzen. CUDA Teaching Center haben Kurse zu GPU Computing in den Lehrplan integriert. Im Rahmen der beiden Programme finden Veranstaltungen mit herausragenden Wissenschaftlern statt, außerdem werden Lehrmaterialien und Hochleistungs-Grafikkarten zur Verfügung gestellt.

Die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), gegründet 1743, ist mit 33.500 Studierenden, 630 Professuren und rund 12.000 Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Und sie ist, wie aktuelle Erhebungen zeigen, eine der erfolgreichsten und forschungsstärksten. So liegt die FAU beispielsweise beim aktuellen Forschungsranking der Deutschen Forschungsgemeinschaft (DFG) auf Platz 8 und gehört damit in die Liga der deutschen Spitzenuniversitäten. Neben dem Exzellenzcluster „Engineering of Advanced Materials“ (EAM9 und der im Rahmen der Exzellenzinitiative eingerichteten Graduiertenschule „School of Advanced Optical Technologies“ (SAOT) werden an der FAU derzeit 31 koordinierte Programme von der DFG gefördert

Die Friedrich-Alexander-Universität bietet insgesamt 142 Studiengänge an, darunter sieben Bayerische Elite-Master-Studiengänge und über 30 mit dezidiert internationaler Ausrichtung. Keine andere Universität in Deutschland kann auf ein derart breit gefächertes und interdisziplinäres Studienangebot auf allen Qualifikationsstufen verweisen. Durch über 500 Hochschulpartnerschaften in 62 Ländern steht den Studierenden der FAU schon während des Studiums die ganze Welt offen.

Weitere Informationen für die Medien:

Pressestelle der FAU
Tel.: 09131/85-70214
presse@zuv.uni-erlangen.de

Dr. Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie