Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Mini-Antenne für die Datenverarbeitung von morgen

19.07.2016

Im Zuge der rasant fortschreitenden Miniaturisierung steht die Datenverarbeitung mit Hilfe elektrischer Ströme vor zum Teil unlösbaren Herausforderungen. Eine vielversprechende Alternative für den Informationstransport in noch kompakteren Chips sind magnetische Spinwellen. Wissenschaftlern des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) ist es nun bei einer internationalen Zusammenarbeit gelungen, Spinwellen mit extrem kurzen Wellenlängen im Nanometer-Bereich – eine entscheidende Eigenschaft für die spätere Anwendung – gezielt zu erzeugen.

Kleiner, schneller, stromsparender – das ist die Devise, nach der sich derzeit Computer und Handys in atemberaubendem Tempo weiterentwickeln. Wie schwierig jedoch eine weitere Miniaturisierung jetzt schon ist, weiß Dr. Sebastian Wintz vom HZDR-Institut für Ionenstrahlphysik und Materialforschung: „Ein wesentliches Problem aktueller Technologien ist die Wärme, die beim Datentransport mit Hilfe elektrischer Ströme entsteht. Wir brauchen ein neues Konzept.“


Das Zentrum eines magnetischen Wirbels sendet unter hochfrequenten magnetischen Wechselfeldern Spinwellen mit sehr kurzen Wellenlängen aus.

HZDR

Zusammen mit internationalen Kollegen arbeitet der Physiker an sogenannten Spinwellen (Magnonen). Diese sollen bewegte Ladungen als Informationsträger in Zukunft ersetzen. Nun ist es den Forschern erstmals gelungen, Spinwellen von derart kleiner Wellenlänge zu erzeugen, dass sie für zukünftige Anwendungen in der Datenverarbeitung relevant sind.

Spinwellen ersetzen elektrischen Strom
Der Spin bezeichnet eine Eigenschaft, die Teilchen ein magnetisches Moment verleiht. Sie verhalten sich demnach wie winzige Magnete, die in ferromagnetischen Materialien parallel zueinander ausgerichtet sind. Ändert nun einer der Spins seine Richtung, beeinflusst dies seine Nachbarn. In einer Kettenreaktion entsteht eine Spinwelle.

Die derzeitige Informationsverarbeitung basiert auf elektrischen Strömen. Dabei rasen die geladenen Teilchen durch ein Netz von Leiterbahnen, die, getrieben vom Wunsch nach immer kompakteren Chips, zunehmend gedrängt zusammen liegen. Auf ihrem Weg stoßen die Elektronen mit Atomen zusammen, die dadurch im Kristallgitter hin und her schwingen und so Wärme erzeugen. Liegen die Leiterbahnen zu dicht beieinander, kann diese nicht mehr abgeführt werden, das System versagt. „Der große Vorteil von Spinwellen ist, dass die Elektronen selbst sich nicht bewegen“, erläutert Wintz. „Beim Datenfluss entsteht also kaum Wärme.“

Magnetwirbel als Nano-Antenne

Die traditionelle Herangehensweise zur Erzeugung von Spinwellen ist der Einsatz von kleinen, künstlich hergestellten Antennen aus Metall, die bei Fluss eines hochfrequenten Wechselstroms Magnonen erzeugen. Dabei entspricht die kleinste erzeugbare Wellenlänge in etwa der Größe der verwendeten Antenne. Genau hierin liegt ein großes Problem: Um den Ansprüchen der fortschreitenden Miniaturisierung zu genügen, sind kleine Wellenlängen im Nanometerbereich notwendig. Jedoch können derart kleine Hochfrequenz-Antennen derzeit nicht gefertigt werden.

Dem Forschungsteam aus Deutschland, der Schweiz und den USA ist es nun gelungen, mit einem völlig neuen Konzept besonders kurzwellige Spinwellen zu erzeugen. Als natürlich geformte Antenne nutzen sie dabei das Zentrum eines magnetischen Wirbels, der in einem hauchdünnen ferromagnetischen Plättchen entsteht:

In Folge der engen räumlichen Begrenzung ordnen sich hier nicht alle Spins, wie üblich, parallel zueinander an, sondern entlang konzentrischer Kreise. Das wiederum zwingt die Spins in einem kleinen Bereich in der Mitte, der nur wenige Nanometer im Durchmesser misst, sich aufzurichten und von der Plättchen-Oberfläche weg zu zeigen. Wird dieses Zentrum einem magnetischen Wechselfeld ausgesetzt, entsteht eine Spinwelle.

Um die gewünschte Kurzwelligkeit zu erreichen, bedarf es jedoch noch eines weiteren Tricks: Ein zweites Plättchen wird auf das erste gelegt, getrennt durch eine dünne, nichtmagnetische Schicht. Bei einer bestimmten Dicke dieser Trennschicht wechselwirken die beiden Plättchen antiferromagnetisch miteinander – die jeweiligen Spins sind bestrebt, in entgegengesetzte Richtungen zu zeigen –, was die Wellenlänge der ausgesandten Spinwelle um ein Vielfaches reduziert. „Nur so kommen wir zu einem für die Informationstechnologie relevanten Ergebnis“, sagt Wintz.

Attraktive Eigenschaften für Anwendungen

Neben der geringen Ausdehnung der so erzeugten Spinwelle konnten die Wissenschaftler noch weitere Eigenschaften demonstrieren, die für zukünftige Applikationen sehr nützlich sein könnten. Mithilfe zeitaufgelöster Aufnahmen eines Röntgen-Mikroskops des Max-Planck-Instituts für Intelligente Systeme in Stuttgart, das am Helmholtz-Zentrum Berlin betrieben wird, zeigten sie, dass die Wellenlänge sich durch die Wahl der Anregungsfrequenz exakt einstellen lässt.

Ähnliche Messungen wurden außerdem am Paul Scherrer Institut in der Schweiz durchgeführt. Dabei sind die Ergebnisse im Einklang mit einem theoretischen Modell, das speziell für diese Arbeit an der Oakland University in den USA berechnet wurde. Hier zeigt sich zudem ein erstaunliches Phänomen, das bislang im Experiment noch nicht direkt beobachtet wurde: die Geschwindigkeit, mit der sich die Spinwellen ausbreiten, ist stark richtungsabhängig. Ein weiterer Punkt, der eine Vielzahl von Anwendungen in der Signalverarbeitung ermöglichen könnte.

__Publikation:
S. Wintz, V. Tiberkevich, M. Weigand, J. Raabe, J. Lindner, A. Erbe, A. Slavin, J. Fassbender, „Magnetic vortex cores as tunable spin-wave emitters“, Nature Nanotechnology, 2016, (DOI: 10.1038/nnano.2016.117)

__Weitere Informationen:
Dr. Sebastian Wintz
Institut für Ionenstrahlphysik und Materialforschung am HZDR | Paul Scherrer Institut (Schweiz)
Tel. +49 351 260-2919 | +41 56 310 3638
E-Mail: s.wintz@hzdr.de | sebastian.wintz@psi.ch

__Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte (Dresden, Leipzig, Freiberg, Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de/presse/magnetwirbel_spinwelle

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze
25.05.2018 | Universität Ulm

nachricht Diagnose per Computer: Gefährliche Krankheitserreger mithilfe maschinellen Lernens erkennen
23.05.2018 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics