Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effizientere Strahlentherapie

09.06.2016

Fraunhofer MEVIS hat neue Methoden entwickelt, um eine Strahlentherapie effektiver an den Behandlungsverlauf anzupassen.

Die Strahlentherapie zählt zu den etablierten Säulen der Krebsbehandlung. Allerdings sind viele Behandlungen nötig, dadurch dauert die Therapie mehrere Wochen. In dieser Zeit müssen die Mediziner den Bestrahlungsplan zuweilen anpassen.


Simulierte Dosisverteilung des Bestrahlungsplans.

Nur dadurch lässt sich ein Tumor effektiv behandeln und das umliegende Gewebe schonen. Im Rahmen des kürzlich abgeschlossenen Verbundprojekts SPARTA hat das Fraunhofer-Institut für Bildgestützte Medizin MEVIS in Bremen mehrere Methoden entwickelt, die diese Anpassung erleichtern und beschleunigen.

Vor Beginn einer Strahlenbehandlung nehmen die Ärzte zunächst ein Bild mit dem Computertomographen (CT) auf, das die Lage des Tumors und der umliegenden Organe zeigt. Auf Basis dieser Aufnahme wird dann ein detaillierter Bestrahlungsplan erstellt. Er legt die Anzahl der Sitzungen fest und gibt an, welche Regionen im Körper mit welcher Dosis bestrahlt werden müssen. Das Ziel ist, den Tumor vollständig zu zerstören und das umliegende gesunde Gewebe zu schonen.

Allerdings verändern sich in den Wochen der Therapiedauer die Bedingungen: Im Laufe der Zeit schrumpft der Tumor, oft variiert auch seine Form. Möglicherweise verliert der Patient an Gewicht, und er ist nicht immer in identischer Position auf der Bestrahlungsliege platziert. Das hat Konsequenzen für den Therapieverlauf: In vielen Fällen ist die ursprünglich geplante Verteilung der Röntgendosis nicht mehr optimal und muss neu angepasst werden.

Um zu gewährleisten, dass der Tumor auch bei späteren Sitzungen möglichst gut getroffen wird, machen die Ärzte CT-Kontrollaufnahmen. Damit lässt sich unter anderem prüfen, ob sich der Tumor verschoben hat, weil der Patient an Gewicht verlor. Infolgedessen könnten sensible Organe in den Fokus der Strahlung kommen und unabsichtlich geschädigt werden.

Um derartige Komplikationen zu verhindern, vergleichen die Ärzte das ursprüngliche CT-Bild mit den Kontrollaufnahmen. Ausgehend von diesem Abgleich passen sie dann die Bestrahlung an die neue Situation an. Allerdings ist diese Neuplanung eine aufwändige und zeitintensive Angelegenheit. Im Rahmen des SPARTA-Projekts hat Fraunhofer MEVIS mehrere Software-Werkzeuge entwickelt, die diese Prozedur beschleunigen und vereinfachen können. Um die Tools möglichst praxistauglich zu gestalten, haben die Experten eng mit Ärzten aus renommierten Universitätskliniken zusammengearbeitet.

Die Bildregistrierung: Die MEVIS-Forscher haben Algorithmen entwickelt, die verschiedene Aufnahmen eines Patienten automatisch zur Deckung bringt. Unter anderem korrigiert das Programm unterschiedliche Positionen auf der Bestrahlungsliege. Wenn nötig werden die Bilder so verformt und verschoben, dass die Strukturen deckungsgleich sind. Damit lässt sich einfacher beurteilen, wie sich ein Geschwür im Laufe der Therapie verändert. Gemeinsam mit der Uniklinik Dresden haben die MEVIS-Experten einen Algorithmus zur Bildregistrierung von Lungenaufnahmen weiterentwickelt und evaluiert. Er bildet die Lunge in verschiedenen Atemphasen exakt aufeinander ab.

Das Nachkonturieren: Um den Bestrahlungsplan zu erstellen, müssen die Mediziner auf einem CT-Bild die Organe und den Tumor möglichst präzise konturieren, d. h. ihre Umrisse aufzeichnen. Zwar schlägt der Rechner bereits heute vor, wie die Konturen aussehen sollten. Aber in der Praxis muss der Arzt sie abgleichen und korrigieren – ein zeitraubender Prozess.

Um ihn zu beschleunigen, haben die MEVIS-Forscher ein Tool geschaffen, das die initial verfügbaren Konturen der ursprünglichen Planung mit Hilfe der Ergebnisse der Bildregistrierung auf die CT Aufnahme des aktuellen Zeitpunkts überträgt. Das Verfahren wird ergänzt durch effiziente Tools zur Nachbearbeitung dieser Konturen. So „schnappt“ mit Hilfe eines Snapping-Werkzeugs eine ungenaue Kontur rasch an die passende Stelle. In Zusammenarbeit mit der Ludwig-Maximilians-Universität in München wurde ein Konturübertragungs-Verfahren für Kopf-Hals-Daten getestet. Das Resultat: Die beteiligten Ärzte benötigten nur etwa halb so viel Zeit für die Nachbearbeitung.

Die Visualisierung: Welche Varianten eines Bestrahlungsplans sind günstig, welche nicht? Muss überhaupt neu geplant werden oder kann man es bei der ursprünglichen Planung belassen? Um die Mediziner bei der Beantwortung diese Fragen zu unterstützen, haben die Bremer Fachleute spezielle Werkzeuge für die Visualisierung entworfen. Sie können zum Beispiel die Unsicherheit zeigen, die sich im Laufe einer mehrwöchigen Therapie durch die Bewegungen des Patienten auf der Bestrahlungsliege ergeben. Dabei zeigt eine 3D-Darstellung eine Bilderreihe, und je stärker die Bewegungen während der Bestrahlung waren, umso unschärfer sind die Bilder gegenüber der Referenz dargestellt. Eine solche Information kann bei der Entscheidung helfen, ob die Bestrahlungsplanung neu angepasst werden muss oder nicht.

Diese und weitere Softwarebausteine haben die Forscher in einem Demonstrator zusammengefasst. Im Prinzip ließen sich einzelne Elemente relativ einfach in vorhandene Produkte von Medizingeräteherstellern integrieren. Fraunhofer MEVIS ist mit den Unternehmen bereits im Gespräch.

SPARTA steht für „Softwareplattform für die Adaptive Multimodale Radio- und Partikel-Therapie mit Autarker Erweiterbarkeit“. Das interdisziplinäre Verbundprojekt begann am 1. April 2013 und lief bis zum 31. März 2016. Das Konsortium umfasste zehn Partner, darunter Forschungsinstitute, Medizintechnik-Unternehmen und Universitätskliniken. SPARTA wurde vom Bundesministerium für Bildung und Forschung (BMBF) mit einer Summe von knapp acht Millionen Euro gefördert. Weitere Informationen unter www.projekt-sparta.de

Weitere Informationen:

http://www.mevis.fraunhofer.de/aktuelles/presseinformation/article/effizientere-...

Bianka Hofmann | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Roboter-Navigation über die Cloud
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Neuer Kaba Zylinder mit Service-Funktion: Zeitlich begrenzter Zutritt für Servicepersonal
07.12.2017 | dormakaba Deutschland GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik