Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Nutzung neuer Rechnerarchitekturen - Neue Simulationswelten für zukünftige Rechner

29.01.2009
Die Herausforderung durch den Paradigmenwechsel für Rechensysteme im Höchstleistungsumfeld von homogenen Rechensystemen hin zu hybriden Lösungen erfordert neue Methoden, um diese Systeme effizient nutzen zu können.

In den letzten Jahren wurde die Leistungssteigerung von Prozessoren nicht mehr durch die bloße Steigerung der Prozessorfrequenz, sondern durch die Platzierung mehrerer Rechenkerne, sogenannter Cores, auf die verfügbare Chipfläche erreicht. Zukünftige Rechnergenerationen mit einer Leistung im Petaflop/s-Bereich werden sich aus mehreren hunderttausend Cores zusammensetzen.

Damit diese mit gleichbleibender Zuverlässigkeit arbeiten, entwickelt das Höchstleistungsrechenzentrum der Universität Stuttgart (HLRS) unter anderem im Rahmen des Förderprogramms "IKT 2020 - Forschung für Innovationen" des Bundesministeriums für Bildung und Forschung (BMBF) neue Lösungsansätze.

Mit dem auch in Spielkonsolen eingesetzten Cell Chip ist bereits seit mehreren Jahren ein heterogener 9-Core Prozessor verfügbar, auch bei Standard PC Prozessoren zeichnet sich eine ähnliche Entwicklung ab.

Die für wissenschaftliches und technisches Rechnen eingesetzten Systeme mit mehreren hunderttausend Cores ermöglichen zahlreiche neue Anwendungen, stellt das Management dieser Systeme und deren effiziente Nutzung allerdings auch vor neue Herausforderungen. In dem vom HLRS koordinierten Projekt TIMaCS (Tools for Intelligent System Management of Very Large Computing Sys-tems) erarbeiteten die Wissenschaftler neue Methoden für eine wissensbasierte Verwaltung dieser sehr großen Rechnersysteme. Im Projekt IMEMO (Innovative Höchstleistungsrechner(HPC)-Methoden und Einsatz für hochskalierbare Molekulare Simulation) werden unter der Leitung des HLRS mit Hilfe von molekularen Simulationen neue Anwendungsfelder von der Verfahrenstechnik über die Materialwissenschaften bis hin zur Bio- und Nanotechnologie erschlossen.

Das Projekt VisPME (Visualization in Parallel Manycore Environments) unter der Federführung des HLRS hat das Ziel, eine flexible, hochparallele und skalierbare Integrationsumgebung zur Datenaufbereitung und interaktiven Visualisierung zu realisieren.

Bei dem ebenfalls vom HLRS geleiteten Projekt STEDG (Hocheffiziente und skalierbare Software für die Simulation turbulenter Strömungen in komplexen Geometrien) nutzen die Forscher die neuartigen numerischen Methoden, die effizient auf heutige und zukünftige Rechnerarchitekturen abgestimmt sind. Die Software ermöglicht Simulationen von Strömungen mit hochwertiger Turbulenzmodellierung und erprobt diese Verfahren an Prototypen aus Luftfahrt, Maschinenbau und Motorentechnik, hier zum Beispiel die Optimierung der Gasinjektion bei Erdgasfahrzeugen.

Die Wissenschaftler des HLRS arbeiten bei den genannten Projekten interdisziplinär mit Instituten der Universität Stuttgart, anderen Forschungseinrichtungen und der Industrie zusammen.

Ansprechpartner:
Dr. Stefan Wesner,
Höchstleistungsrechenzentrum Universität Stuttgart,
Tel. 0711/685-64275,
e-mail: wesner@hlrs.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.hlrs.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Sparsame Zeitsynchronisierung von Sensornetzen mittels Zeitreihenanalyse
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Viele glauben, Industrie 4.0 kann man kaufen
24.01.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie