Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchblick im Datenwust

01.07.2014

Viele Biolabore kämpfen mit einer Fülle an Messdaten. Eine neuartige Software vereinfacht die Auswertung der Laborexperimente und vereinheitlicht die Speicherung der Daten. Auch Messfehler lassen sich sofort erkennen.

Bei Laboruntersuchungen fallen zahlreiche Messergebnisse an. Diese umfangreichen Daten vollständig und systematisch zu archivieren, ist äußerst aufwändig. Ein Viertel ihrer Zeit verwenden beispielsweise Forscher in den Lebenswissenschaften für das Verwalten von Daten.


Viele Proben müssen zugeordnet werden. Typisches Design eines Multiplex-Immunoassays für die Zellvermessung. (© Fraunhofer FIT)

Das belegt eine Online-Umfrage des Fraunhofer-Instituts für Angewandte Informationstechnik FIT in Sankt Augustin unter 70 Personen in biologischen Laboren. Viele der Befragten berichten, dass es bei ihnen keine zentrale und strukturierte Datenerfassung gebe. Der größte Datenkiller ist, wenn ein Doktorand oder Assistent mit jahrelanger Erfahrung das Institut verlässt. Wollen die Nachfolger ältere Messergebnisse nachvollziehen, beginnt nicht selten die Suche in kryptischen Excel-Tabellen und Papierlisten.

Das FIT hat daraus Konsequenzen gezogen: Der »MPlexAnalyzer«, eine Software mit Schritt-für-Schritt-Bedienung, erleichtert das  Datenmanagement erheblich. Zunächst konzentrierten sich die Experten auf Geräte zur Zellvermessung, die eine simultane Bestimmung einer Vielzahl von Proteinen in einem Versuchsansatz ermöglichen. Solche Ansätze, auch zytometrische Multiplex-Assays genannt, gehören zu den Standard-
methoden in jedem Biolabor.

Da solche Assays sehr komplex sind und große Datenmengen erzeugen, läuft die Datenerfassung ohne Software-Unterstützung für das Personal leicht aus dem Ruder. Die FIT-Software leitet den Nutzer mit einem Assistenten, dem Wizard, durch den Messprozess. Von der Auswahl der Messplatten über die Wahl der Proben und die Belegung der Platten mit Normproben bis zum Ausdruck eines übersichtlichen Berichts als PDF-Datei sind die Abläufe transparent und für Neulinge schnell zu verstehen.

Kügelchen werden mit Antikörpern beschichtet

Ein zytometrisches Multiplex-Assay arbeitet mit Polystyrolkügelchen, die nur sechs Mikrometer messen. Sie sind mit einer Farbstoffmixtur beladen, die zwei Laserstrahlen zum Leuchten anregen. Das Leuchtmuster ist wie ein Fingerabdruck: Bis zu hundert verschiedene Sorten von Kügelchen lassen sich so unterscheiden. Bei der Messung fließen die Kügelchen (beads) wie auf einer Perlenkette aufgereiht durch eine dünne Glaskanüle. Kameras messen die Farbmuster und zählen sortenrein.

Interessant wird das für die Biologen, weil die Kügelchen noch eine zweite Fracht tragen: An ihren Oberflächen befindet sich ein farblich markierter Antikörper, den einer der beiden Laser anregt. Dieser Farbstoff emittiert Licht einer anderen Wellenlänge – allerdings nur wenn an den Antikörper bestimmte Substanzen angedockt haben – das können zum Beispiel Blutbestandteile, Ausscheidungen von Zellen oder Signalproteine von Krebszellen sein. Ein Multiplex-Assay untersucht bis zu 100 dieser Substanzen gleichzeitig.

Am Ende ergibt sich ein großer Datensatz. Darin steht die Zahl der registrierten Kügelchen zusammen mit der zu bestimmenden Substanz. Die Messung ist hochautomatisiert. Im Minutentakt werden bis zu 96 unterschiedliche Proben getestet, die sich in kleinen Töpfchen in einer Glasplatte befinden. Dabei ist ein Teil von ihnen mit Proben belegt, ein anderer Teil mit Vergleichssubstanzen, die zur Eichung der Messwerte die-
nen. Die Dokumentation darüber, welche Probe sich wo befindet und welche Messergebnisse jeweils anfallen, erforderte bisher aufwändige Handarbeit.

»Unser Software-Wizard vereinfacht das: Mit wenigen Mausklicks lassen sich am Bildschirm Töpfchen markieren, die Vergleichsproben enthalten oder solche, die leer sind. Leuchtet das entsprechende Feld rot, stimmen Vorgabe und Messung nicht überein – der Laborant sieht sofort, wenn er einen Fehler gemacht hat oder wenn die Qualität der Messung nicht ausreicht, um eine statistisch verlässliche Aussage zu treffen«, erläutert Dr. Andreas Pippow, wissenschaftlicher Mitarbeiter am FIT.

Für das FIT ist die Software der Einstieg in das Datenmanagement biologischer Labors. Die Idee soll nun auf andere Anwendungen übertragen werden, etwa auf Mikroskope. Im biologischen Labor in Sankt Augustin baut die Abteilung »Life Science Informatik« des Fraunhofer FIT Spezialmikroskope für große Proben, die unter dem Objektiv automatisch hin- und hergefahren und abgescannt werden.

Geplant ist eine Datenbank für alle Messungen, die in Laboren anfallen. Das können Daten von Multiplex-Assays, Mikroskopen oder weiteren Messgeräten sein. Der Charme des gemeinsamen Datenmangements liegt in der Verknüpfung. Wenn zum Beispiel Körperzellen in Folge einer Krankheit bestimmte Botenstoffe aussenden, hat das oft auch Folgen für die Struktur des Gewebes. Das lässt sich nur erkennen, wenn man die Bestimmung der Signalstoffe aus dem Multiplex-Assay und die Mikroskopbilder in der Software abgleicht.

Dr. Andreas Pippow | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten