Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dresdner Forscher wollen lichtschnelle Computerchips konstruieren

09.02.2016

TU Dresden leitet Projekt „DIMENSION“ für neue Laser-Kommunikations-Chips auf Siliziumbasis

Weil die zu verarbeitenden Datenmengen im Internet und vor allem in den Mobilfunk-Netzen weltweit Jahr für Jahr enorm wachsen, wollen Elektronikexperten der Technischen Universität Dresden (TUD) bis zum Jahr 2020 besonders schnelle und effiziente Laser-Computerchips auf Silizium-Basis für die optische Datenübertragung entwickeln.


Grafik: DIMENSION

Diese Siliziumphotonik-Chips sollen künftig zum Beispiel in großen Rechenzentren dafür sorgen, dass Hochleistungs-Computer ihre Daten mit Lichtgeschwindigkeit austauschen können und dabei nur wenig Energie verbrauchen.

Um diese neuartigen Silizium-Laser-Chips zu entwickeln, haben die TUD-Wissenschaftler gemeinsam mit europäischen Partnern am 1. Februar 2016 das Forschungsprojekt „Directly Modulated Lasers on Silicon“ (DIMENSION) gestartet.

Für „DIMENSION“ stehen rund 3,4 Millionen Euro zur Verfügung. Davon steuert die EU zirka 2,6 Millionen Euro über das Innovationsprogramm „Horizon 2020“ bei. Die restlichen Mittel finanzieren die Projektpartner, die sich heute zu einer Auftakt-Beratung in Dresden getroffen haben.

Die TUD-Professur für Schaltungstechnik und Netzwerktheorie der Fakultät Elektrotechnik und Informationstechnik koordiniert das Projekt. Bis zum Jahr 2020 wollen die Wissenschaftler erste Demonstratoren vorstellen, die mit den neuen Chips Daten übertragen.

Führende Rolle in Siliziumphotonik für Deutschland möglich

„DIMENSION“ könne für einen Durchbruch in der Siliziumphotonik sorgen und habe das Potenzial, Deutschland und Europa eine führende Position auf dem Gebiet der Siliziumphotonik zu sichern, schätzten die TUD-Wissenschaftler ein. Diese Technologie könne zudem viele Arbeitsplätze in der sächsischen Halbleiter-Industrie schaffen und erhalten.

Zum Hintergrund: Zwar gibt es auch heute schon Laser-Chips für die Datenübertragung. Diese müssen aber noch aus speziellen Halbleiter-Materialien hergestellt werden. Und diese Materialien vertragen sich nur schlecht mit den sogenannten CMOS-Produktionstechnologien („Complementary metal-oxide-semiconductor“) auf Silizium-Basis, die in den meisten Chipfabriken dominieren.

„Bereits heute können fast alle Chipkomponenten auf einem Siliziumchip integriert werden – mit Ausnahme der sogenannten aktiven optischen Komponenten“, betonte Projektkoordinator Professor Frank Ellinger, der den Lehrstuhl für Schaltungstechnik und Netzwerktheorie an der TUD leitet. Dabei handele es sich um Laser zur Lichterzeugung für die optische Datenübertragung.

„Diese können aufgrund der physikalischen Eigenschaften des Materials bislang nicht effizient auf siliziumbasierten Chips erzeugt werden.“ Das wiederum habe zur Folge, „dass bislang Systeme für die Datenübertragung aus mehreren Chips aufgebaut werden müssen“, ergänzte Projektmanager Dr. Ronny Henker. „Dadurch wird die Chipproduktion aufwendig und teuer. Außerdem führt dieser Chipaufbau zu hohen Verlusten bei der Datenübertragung.“

Durch das „DIMENSION“-Projekt wollen die Forscher nun alle Komponenten auf nur einem Chip auf Siliziumbasis integrieren. Dies soll für eine schnellere Datenübertragung sorgen, den Energieverbrauch – und somit auch den Kohlendioxid-Ausstoß der Informations- und Kommunikationstechnologie – senken und die Umwelt schonen. Außerdem soll die neue Technologie die Produktionskosten stark reduzieren, weil dann weniger Material für die Chipherstellung benötigt wird.

Zum Forschungskonsortium „DIMENSION“ gehören neben der TU Dresden zwei Forschungsinstitute sowie zwei Groß- und ein Kleinunternehmen aus vier europäischen Ländern: IBM Research (Schweiz); ADVA Optical Networking (Deutschland); IHP Microelectronics (Deutschland); Research and Education Laboratory in Information Technology (Griechenland); Optocap (Großbritannien).

Informationen für Journalisten:
Dr. Ronny Henker
Fakultät Elektrotechnik und Informationstechnik
Professur für Schaltungstechnik und Netzwerktheorie
Tel.: +49 351 463 33084
Fax: +49 351 463-38736
E-Mail: ronny.henker@tu-dresden.de

Prof. Dr. sc. techn. habil. Frank Ellinger
Fakultät Elektrotechnik und Informationstechnik
Professur für Schaltungstechnik und Netzwerktheorie
Tel: +49 351 463- 38735
Fax: +49 351 463- 38736
E-Mail: frank.ellinger@tu-dresden.de

Kim-Astrid Magister | Technische Universität Dresden
Weitere Informationen:
http://www.tu-dresden.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Das Start-up inveox will Krebsdiagnosen durch Automatisierung im Labor zuverlässiger machen
15.06.2018 | Technische Universität München

nachricht Fußball durch die Augen des Computers
14.06.2018 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics