Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Domänenwände als neue Informationsspeicher

11.09.2013
Bewegung von Domänenwänden abgebildet: Materialdefekte spielen
bei hohen Geschwindigkeiten keine Rolle mehr – Publikation in Nature Communications

Auf der Suche nach immer kleineren Bauteilen für die Datenspeicherung und neuartigen Sensoren haben Physiker der Johannes Gutenberg-Universität Mainz (JGU) die Vorgänge in magnetischen Nanodrähtchen direkt beobachtet und damit den Weg für weitere Forschungen auf dem Gebiet des Nanomagnetismus geebnet.


Rasterelektronenmikroskop-Aufnahme eines ferromagnetischen Rings: Die Magnetisierung (Schwarz-Weiß-Kontrast) zeigt entlang des Rings und bildet zwei Domänenwände.
Quelle: André Bisig, Institut für Physik, Johannes Gutenberg-Universität Mainz

Hierbei werden kleine magnetische Domänenwand-Strukturen in einem Nanodraht genutzt, um Informationen zu speichern oder z.B. Winkeländerungen zu detektieren. Erste Anwendungen, die auf dem Prinzip von magnetischen Domänenwänden beruhen, werden bereits in der Sensortechnologie genutzt.

Mit den jetzigen Beobachtungen wurden vorhergesagte Zusammenhänge erstmals experimentell durch direkte Abbildung festgehalten und neue Eigenschaften gefunden, die in Zukunft eventuell für weitere Anwendungsmöglichkeiten in der Informationstechnologie nutzbar gemacht werden können.

Der Nanomagnetismus beruht auf kleinen Strukturen, sogenannten Domänen, die in ferromagnetischen Materialien einen Bereich einheitlicher Magnetisierung bilden. Innerhalb einer Domäne weist die Magnetisierung in eine bestimmte Richtung. Treffen Domänen unterschiedlicher Ausrichtung aufeinander, wird dieser Bereich als Domänenwand bezeichnet.

An der JGU untersucht die Arbeitsgruppe von Univ.-Prof. Dr. Mathias Kläui die Eigenschaften magnetischer Domänen und die Dynamik von Domänen und Domänenwänden in nanoskopisch kleinen Ringen. An diesen Ringen von etwa 4 Mikrometer Durchmesser, bestehend aus Permalloy, einer weichen ferromagnetischen Nickel-Eisen-Legierung, konnten nun die Bewegungen der Domänenwand direkt beobachtet werden.

Hierzu arbeiteten die Mainzer Physiker mit Wissenschaftlern der Synchrotronanlagen BESSY II des Helmholtz-Zentrum Berlin für Materialien und Energie und ALS (Advanced Light Source), Lawrence Berkeley National Laboratory, Berkeley, USA, zusammen sowie mit der Technischen Universität Berlin und dem Max-Planck-Institut für Intelligente Systeme in Stuttgart.

Die Wissenschaftler konnten beobachten, dass die Geschwindigkeit der Domänenwände immer oszilliert. „Das ist ein neuer Effekt, den man vielleicht in Zukunft nutzen könnte“, erklärt Dr. André Bisig, Erstautor der Studie „Correlation between spin structure oscillations and domain wall velocities“, die am 27. August von Nature Communications veröffentlicht wurde.

Es zeigte sich außerdem, dass die angewandte Methode sehr gut funktioniert, um die Domänenwände zuverlässig bei sehr hohen Geschwindigkeiten zu bewegen. „Je schneller wir die Domänenwand drehen, desto einfacher ist es, sie zu kontrollieren“, so Bisig. Eine weitere Beobachtung betrifft die Auswirkungen, die von Unregelmäßigkeiten oder Defekten in den Nanodrähten ausgehen.

Diese Auswirkungen machen sich nur, so die Ergebnisse, bei langsamen Domänenwänden bemerkbar. Je schneller eine Domänenwand gedreht wird, umso weniger spielen Defekte im Material eine Rolle.

Während sich die Grundlagenforschung auf die Beobachtung der Domänenwandgeschwindigkeit und den Zusammenhang mit der Oszillation in der Spinstruktur bezieht, haben die Ergebnisse auch wichtige Konsequenzen für die anwendungsorientierte Forschung. So werden Domänenwand-basierte Sensoren bereits von der Firma Sensitec GmbH, Mainz, genutzt, einem Kooperationspartner der JGU und der TU Kaiserslautern bei zwei vom Land Rheinland-Pfalz geförderten Projekten: der Spintronik-Technologieplattform in Rheinland-Pfalz (STeP) und dem Technologietransfer-Dienstleistungszentrum für Neue Materialien (TT-DINEMA).

„Insbesondere unsere Beobachtung der störungsfreien Domänenwandbewegung bei hohen Domänenwandgeschwindigkeiten liefert einen vielversprechenden Ansatz, um diese Nanostrukturen für ultraschnell rotierende Sensoren zu nutzen“, teilte Mathias Kläui dazu mit. Die Forschungen der Arbeitsgruppe Kläui werden durch einen ERC Starting Grant und die Exzellenz-Graduiertenschule Materials Science in Mainz (MAINZ) gefördert. Außerdem hat die Zusammenarbeit mit Sensitec zu einem gemeinsamen EU-Projekt mit sieben weiteren führenden Partnern geführt, das im Oktober 2013 die Arbeit aufnimmt: „Controlling domain wall dynamics for functional devices“.

Veröffentlichung:
André Bisig et al.
Correlation between spin structure oscillations and domain wall velocities
Nature Communications, 27. August 2013
DOI: 10.1038/ncomms3328
Weitere Informationen:
Dr. André Bisig
Kläui-Lab
Theorie der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-23635
E-Mail: bisig@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de
http://www.nature.com/ncomms/2013/130827/ncomms3328/full/ncomms3328.html

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Der Form eine Funktion verleihen
23.06.2017 | Institute of Science and Technology Austria

nachricht Zukunftstechnologie 3D-Druck: Raubkopien mit sicherem Lizenzmanagement verhindern
23.06.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften