Das Gehirn mit „Legosteinen“ modellieren

Forscher haben Simulationsmethoden entwickelt, die es erlauben, dass Chirurgen vor komplexen Operationen Probeläufe absolvieren, und die während der Operation eine zusätzliche Orientierung bieten. Legato Team / University of Luxembourg

Chirurgen operieren oft im Dunklen. Ihre Sicht beschränkt sich auf die Oberfläche des Organs und sie können normalerweise nicht sehen, was sich im Inneren verbirgt. Zwar können vor der Operation routinemäßig Bilder von hoher Qualität aufgenommen werden, doch sobald die Operation beginnt, verändert sich ständig die genaue Position des Operationsziels, wie zum Beispiel ein Tumor, und von riskanten Bereichen, die der Chirurg meiden muss.

Dadurch sind die Ärzte oft gezwungen, sich allein auf ihre Erfahrung zu verlassen, wenn sie chirurgische Instrumente steuern, um beispielsweise einen Tumor zu entfernen, ohne gesundes Gewebe zu beschädigen oder wichtige Blutgefäße zu durchtrennen.

Stéphane Bordas, Professor für Computational Mechanics an der Fakultät für Naturwissenschaften, Technologie und Kommunikation der Universität Luxemburg, und sein Team haben Simulationsmethoden entwickelt, die es erlauben, dass Chirurgen vor derart komplexen Operationen Probeläufe absolvieren, und die während der Operation eine zusätzliche Orientierung bieten.

Hierzu entwickelte das Team mathematische Modelle und Algorithmen, die vorausberechnen, wie sich das Organs während der Operation verformt, und an welcher exakten Position sich das Operationsziel und kritische Bereichen aktuell befinden. Mit diesen Hilfsmitteln könnte der Arzt eine spezielle Operation virtuell proben, um eventuelle Komplikationen vorauszusehen.

Da das Gehirn sich aus verschiedenartigen Substanzen zusammensetzt (graue Substanz, weiße Substanz und Flüssigkeiten), verwenden die Forscher Daten aus der medizinischen Bildgebung, z. B. MRT, um das Gehirn virtuell in Untereinheiten aufzuteilen, die mit Legosteinen vergleichbar sind. Die Farbe jedes Legosteins wird durch die Substanz bestimmt, für die er steht: weiße oder graue Substanz oder Flüssigkeit. Dieses farbcodierte „digitale Lego-Gehirn“ besteht aus Tausenden dieser interagierenden und sich verformenden Blöcke, mit deren Hilfe berechnet wird, wie sich das Organ durch die Einwirkung des Chirurgen verändert.

Je mehr Blöcke die Forscher zur Modellierung des Gehirns verwenden, desto genauer ist die Simulation. Gleichzeitig wird die Simulation dadurch auch langsamer, da mehr Rechenleistung benötigt wird, wenn eine größere Zahl an Elementen berechnet wird. Für den Benutzer ist es daher wichtig, die richtige Balance zwischen Genauigkeit und Geschwindigkeit zu finden, wenn er entscheidet, wie viele Blöcke verwendet werden sollen.

Der wesentliche Aspekt der Arbeit von Prof. Dr. Bordas ist, dass es zum ersten Mal möglich ist, sowohl die Genauigkeit als auch die Berechnungszeit der Simulationen zu kontrollieren und zu steuern. „Wir haben eine Methode entwickelt, die Zeit und Geld sparen kann, indem sie dem Benutzer anzeigt, wie groß diese Lego-Blöcke mindestens sein müssen, um einen bestimmten Genauigkeitsgrad zu erreichen. Beispielsweise können wir mit Gewissheit sagen: Wenn sie eine Fehlermarge von zehn Prozent akzeptieren, dann dürfen ihre Legosteine höchstens 1 mm lang sein. Wenn zwanzig Prozent für sie ausreichen, können sie 5 mm große Elemente verwenden“, erläutert Bordas. „Diese Methode hat zwei Vorteile: Sie erhalten eine Einschätzung zur Qualität und können den Berechnungsaufwand auf die Gebiete konzentrieren, bei denen dieser Aufwand wirklich notwendig ist. Dadurch sparen sie wertvolle Berechnungszeit.“

Das längerfristige Ziel der Forscher ist es, für Chirurgen eine Lösung zu entwickeln, die während den Operationen eingesetzt werden kann und das Simulationsmodell in Echtzeit laufend mit Patientendaten aktualisiert. Prof. Dr. Bordas zufolge wird es jedoch noch eine Zeit lang dauern, bis es soweit ist. „Wir müssen noch robustere Methoden für die Einschätzung des mechanischen Verhaltens der einzelnen Legosteine entwickeln, die das Gehirn darstellen. Wir müssen auch eine benutzerfreundliche Plattform entwickeln, die von Chirurgen getestet werden kann, sodass sie uns mitteilen können, ob unser Tool hilfreich ist“, so Bordas.

Die Forscher haben ihre Ergebnisse in „IEEE Transactions on Biomedical Engineering“ veröffentlicht.

https://wwwde.uni.lu/university/news/latest_news/modelling_the_brain_with_lego_b…

Media Contact

Thomas Klein idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer