Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn mit „Legosteinen“ modellieren

16.06.2017

Forscher der Universität Luxemburg haben in Zusammenarbeit mit der Universität Straßburg eine Methode entwickelt, die Chirurgen helfen könnte, bei Gehirnoperationen die richtigen Entscheidungen zu treffen.

Chirurgen operieren oft im Dunklen. Ihre Sicht beschränkt sich auf die Oberfläche des Organs und sie können normalerweise nicht sehen, was sich im Inneren verbirgt. Zwar können vor der Operation routinemäßig Bilder von hoher Qualität aufgenommen werden, doch sobald die Operation beginnt, verändert sich ständig die genaue Position des Operationsziels, wie zum Beispiel ein Tumor, und von riskanten Bereichen, die der Chirurg meiden muss.


Forscher haben Simulationsmethoden entwickelt, die es erlauben, dass Chirurgen vor komplexen Operationen Probeläufe absolvieren, und die während der Operation eine zusätzliche Orientierung bieten.

Legato Team / University of Luxembourg

Dadurch sind die Ärzte oft gezwungen, sich allein auf ihre Erfahrung zu verlassen, wenn sie chirurgische Instrumente steuern, um beispielsweise einen Tumor zu entfernen, ohne gesundes Gewebe zu beschädigen oder wichtige Blutgefäße zu durchtrennen.

Stéphane Bordas, Professor für Computational Mechanics an der Fakultät für Naturwissenschaften, Technologie und Kommunikation der Universität Luxemburg, und sein Team haben Simulationsmethoden entwickelt, die es erlauben, dass Chirurgen vor derart komplexen Operationen Probeläufe absolvieren, und die während der Operation eine zusätzliche Orientierung bieten.

Hierzu entwickelte das Team mathematische Modelle und Algorithmen, die vorausberechnen, wie sich das Organs während der Operation verformt, und an welcher exakten Position sich das Operationsziel und kritische Bereichen aktuell befinden. Mit diesen Hilfsmitteln könnte der Arzt eine spezielle Operation virtuell proben, um eventuelle Komplikationen vorauszusehen.

Da das Gehirn sich aus verschiedenartigen Substanzen zusammensetzt (graue Substanz, weiße Substanz und Flüssigkeiten), verwenden die Forscher Daten aus der medizinischen Bildgebung, z. B. MRT, um das Gehirn virtuell in Untereinheiten aufzuteilen, die mit Legosteinen vergleichbar sind. Die Farbe jedes Legosteins wird durch die Substanz bestimmt, für die er steht: weiße oder graue Substanz oder Flüssigkeit. Dieses farbcodierte „digitale Lego-Gehirn“ besteht aus Tausenden dieser interagierenden und sich verformenden Blöcke, mit deren Hilfe berechnet wird, wie sich das Organ durch die Einwirkung des Chirurgen verändert.

Je mehr Blöcke die Forscher zur Modellierung des Gehirns verwenden, desto genauer ist die Simulation. Gleichzeitig wird die Simulation dadurch auch langsamer, da mehr Rechenleistung benötigt wird, wenn eine größere Zahl an Elementen berechnet wird. Für den Benutzer ist es daher wichtig, die richtige Balance zwischen Genauigkeit und Geschwindigkeit zu finden, wenn er entscheidet, wie viele Blöcke verwendet werden sollen.

Der wesentliche Aspekt der Arbeit von Prof. Dr. Bordas ist, dass es zum ersten Mal möglich ist, sowohl die Genauigkeit als auch die Berechnungszeit der Simulationen zu kontrollieren und zu steuern. „Wir haben eine Methode entwickelt, die Zeit und Geld sparen kann, indem sie dem Benutzer anzeigt, wie groß diese Lego-Blöcke mindestens sein müssen, um einen bestimmten Genauigkeitsgrad zu erreichen. Beispielsweise können wir mit Gewissheit sagen: Wenn sie eine Fehlermarge von zehn Prozent akzeptieren, dann dürfen ihre Legosteine höchstens 1 mm lang sein. Wenn zwanzig Prozent für sie ausreichen, können sie 5 mm große Elemente verwenden“, erläutert Bordas. „Diese Methode hat zwei Vorteile: Sie erhalten eine Einschätzung zur Qualität und können den Berechnungsaufwand auf die Gebiete konzentrieren, bei denen dieser Aufwand wirklich notwendig ist. Dadurch sparen sie wertvolle Berechnungszeit.“

Das längerfristige Ziel der Forscher ist es, für Chirurgen eine Lösung zu entwickeln, die während den Operationen eingesetzt werden kann und das Simulationsmodell in Echtzeit laufend mit Patientendaten aktualisiert. Prof. Dr. Bordas zufolge wird es jedoch noch eine Zeit lang dauern, bis es soweit ist. „Wir müssen noch robustere Methoden für die Einschätzung des mechanischen Verhaltens der einzelnen Legosteine entwickeln, die das Gehirn darstellen. Wir müssen auch eine benutzerfreundliche Plattform entwickeln, die von Chirurgen getestet werden kann, sodass sie uns mitteilen können, ob unser Tool hilfreich ist“, so Bordas.

Die Forscher haben ihre Ergebnisse in „IEEE Transactions on Biomedical Engineering“ veröffentlicht.

Weitere Informationen:

https://wwwde.uni.lu/university/news/latest_news/modelling_the_brain_with_lego_b...

Thomas Klein | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Gehirn Legosteine Modellierung des Gehirns Simulation Tumor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Kieler Wissenschaft entwickelt exzellentes Forschungsdatenmanagement
21.08.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Computer mit Köpfchen
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik