Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computerspeicher: Magnetisches Moment maximiert Memory

10.07.2012
SimulationsexpertInnen der FH St. Pölten "spinnen" neue Datenspeicher

Nanomagnetische Bauteile könnten die Zukunft der zentralen Speichermöglichkeiten von Computern bedeuten. Wesentlich dafür ist die Nutzung der als "magnetischer Spin" bezeichneten Eigenschaft bestimmter Metalle. Das hat die Analyse von nanomagnetischen Prozessen durch modernste Simulationstechniken an der Fachhochschule St. Pölten ergeben. Heute werden neueste Erkenntnisse zu nanomagnetischen Potentialen und Anwendungsbeispiele dieser Technologie auf der 19th International Conference on Magnetism in Korea der Fachwelt vorgestellt.

Maximale Leistungssteigerung - höher, schneller, weiter - die Nachfrage nach miniaturisierten Technologien, die Rechenprozesse schneller und energieeffizienter machen und größere Speichervolumina erlauben, ist enorm. "Da stellt sich die Frage, wie die Zukunft des als RAM bezeichneten Arbeitsspeichers von Computern oder auch der Festplatte aussehen könnte. Die Spin-Elektronik und Nanostrukturen sind dabei große Hoffnungsträger, da sie die Konstruktion neuartiger magnetischer Datenspeicher erlauben", meint Prof. Dr. Thomas Schrefl, Leiter des Master-Studiengangs Industrial Simulation an der FH St. Pölten.

Die Nutzung des Nanomagnetismus würde das derzeit flüchtige Gedächtnis des Arbeitsspeichers in ein elefantenhaftes Langzeitgedächtnis verwandeln. Und die Speicherkapazität von Festplatten ist noch lange nicht ausgereizt, wenn man das nanomagnetische Verhalten ihrer Komponenten optimal ausnützt. Die Berechnung und Analyse der dafür notwendigen magnetischen Prozesse ist allerdings eine Herausforderung an die Rechenleistung, die nur durch modernste Simulationstechnik zu meistern ist. An der FH St. Pölten wird diese Herausforderung nun mit einem innovativen Simulationsmodell angenommen.

1:0 FÜR DIE SIMULATION

Mit diesem Modell lässt sich das Verhalten von magnetischen Nanostrukturen, also mikroskopisch kleinen magnetischen Teilchen in Schichtsystemen, analysieren. Wesentlich ist dabei, das "Umschalten" von elektromagnetischen Elementen darstellen zu können. Denn dieses liegt dem Prinzip, digitale Information in binären Codes von "1" und "0" darzustellen, zugrunde. An der FH St. Pölten werden dazu nun unterschiedliche Simulationstechniken wie stochastische Optimierungsalgorithmen und Randelementeverfahren zur Berechnung magnetischer Felder mit der sogenannten Finite-Elemente-Methode kombiniert: "Dabei handelt es sich um eine Simulationsmethode, die auch in der Statik und der Mechanik für die Konstruktion von Hochhäusern und Brücken eingesetzt wird. Diese Technologie kann man auch auf magnetische Teilchen anwenden, um sich magnetische Spin-Eigenschaften von Elektronen anzuschauen", erläutert Prof. Schrefl. Und gerade dieser Spin könnte der Schlüssel zu revolutionären Fortschritten bei der Entwicklung der zentralen Computerspeicher sein.

So funktionieren selbst die leistungsfähigsten Arbeitsspeicher (RAM - Random Access Memory) noch heute nach dem ursprünglichen Prinzip, das die Speicherung auf Grundlage elektrischer Ladung vorsieht. Hohe Ladung = 1, niedrige Ladung = 0. Ist der Strom weg, passiert aber auch das Gleiche mit der gespeicherten Information. Anders bei der Nutzung des magnetischen Spins von Elektronen. Dieser ist auch ohne Strom stabil und kennt sogar vier Zustände: links, rechts, oben, unten. Neben stromunabhängiger Speicherung ist durch die Nutzung dieser vier Zustände auch eine höhere Speicherdichte möglich.

MAGNETISCHE RAM-POWER

Erste Umsetzung dieses Prinzips sind sogenannte MRAMs (Magnetic Random Access Memory). Diese basieren auf mikroskopisch kleinen, zirka 40x40 Nanometer großen, magnetischen Elementen, deren Verhalten das Team um Schrefl simuliert. Dieser meint dazu: "Unser Ziel ist es, bei den Umschaltprozessen eine Geschwindigkeit von 10 Bit pro Nanosekunde zu erreichen. Doch dieses Ziel ist nur bei einem optimalen Design unter gleichzeitig effizienter Nutzung der Materialeigenschaften möglich." Gleiches gilt für die Optimierung des Festplattendesigns, das bereits auf magnetische Prozesse aufbaut, diese aber laut Prof. Schrefl bei Weitem nicht zu ihrem vollen Potential ausnützt.

Auf der 19th International Conference on Magnetism vom 8. - 13. Juli in Korea werden nun unter dem Motto "Magnetic Memories" von Prof. Schrefl solche Anwendungsgebiete der von ihm entwickelten Simulationsverfahren vorgestellt. Deren Nutzung, davon ist der Experte überzeugt, erlaubt es, die Computer-Power des 21. Jahrhunderts zu maximieren - ohne den aufwändigen Bau zahlloser Prototypen.

Über die Fachhochschule St. Pölten
Die Fachhochschule St. Pölten ist Anbieterin praxisbezogener und leistungsorientierter Hochschulausbildung in den Themengebieten Medien, Informatik, Verkehr, Gesundheit und Soziales. In mittlerweile 16 Studiengängen werden rund 2.000 Studierende betreut. Neben der Lehre widmet sich die FH St. Pölten intensiv der Forschung. Die wissenschaftliche Arbeit erfolgt innerhalb der Kompetenzfelder Medientechnik, Medienwirtschaft, IT-Sicherheit, Simulation, Schienenverkehr, Gesundheit und Soziales. Es erfolgt ein stetiger Austausch zwischen Studiengängen und Instituten, in denen laufend praxisnahe und anwendungsorientierte Forschungsprojekte entwickelt und umgesetzt werden.
Wissenschaftlicher Kontakt:
Prof. Dr. Thomas Schrefl
Fachhochschule St. Pölten
Leiter des Master-Studiengangs
Industrial Simulation
Matthias-Corvinus-Str. 15
3100 St. Pölten
T +43 / (0)2742 / 313 228 - 313
E thomas.schrefl@fhstp.ac.at
W http://www.fhstp.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D
Weitere Informationen:
http://www.fhstp.ac.at

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Intel und Universität Luxemburg kooperieren, um selbstfahrende Autos sicherer zu machen
24.11.2017 | Universität Luxemburg - Université du Luxembourg

nachricht Europäisches Konsortium baut effizientestes Rechenzentrum der Welt
22.11.2017 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie