Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computerspeicher: Magnetisches Moment maximiert Memory

10.07.2012
SimulationsexpertInnen der FH St. Pölten "spinnen" neue Datenspeicher

Nanomagnetische Bauteile könnten die Zukunft der zentralen Speichermöglichkeiten von Computern bedeuten. Wesentlich dafür ist die Nutzung der als "magnetischer Spin" bezeichneten Eigenschaft bestimmter Metalle. Das hat die Analyse von nanomagnetischen Prozessen durch modernste Simulationstechniken an der Fachhochschule St. Pölten ergeben. Heute werden neueste Erkenntnisse zu nanomagnetischen Potentialen und Anwendungsbeispiele dieser Technologie auf der 19th International Conference on Magnetism in Korea der Fachwelt vorgestellt.

Maximale Leistungssteigerung - höher, schneller, weiter - die Nachfrage nach miniaturisierten Technologien, die Rechenprozesse schneller und energieeffizienter machen und größere Speichervolumina erlauben, ist enorm. "Da stellt sich die Frage, wie die Zukunft des als RAM bezeichneten Arbeitsspeichers von Computern oder auch der Festplatte aussehen könnte. Die Spin-Elektronik und Nanostrukturen sind dabei große Hoffnungsträger, da sie die Konstruktion neuartiger magnetischer Datenspeicher erlauben", meint Prof. Dr. Thomas Schrefl, Leiter des Master-Studiengangs Industrial Simulation an der FH St. Pölten.

Die Nutzung des Nanomagnetismus würde das derzeit flüchtige Gedächtnis des Arbeitsspeichers in ein elefantenhaftes Langzeitgedächtnis verwandeln. Und die Speicherkapazität von Festplatten ist noch lange nicht ausgereizt, wenn man das nanomagnetische Verhalten ihrer Komponenten optimal ausnützt. Die Berechnung und Analyse der dafür notwendigen magnetischen Prozesse ist allerdings eine Herausforderung an die Rechenleistung, die nur durch modernste Simulationstechnik zu meistern ist. An der FH St. Pölten wird diese Herausforderung nun mit einem innovativen Simulationsmodell angenommen.

1:0 FÜR DIE SIMULATION

Mit diesem Modell lässt sich das Verhalten von magnetischen Nanostrukturen, also mikroskopisch kleinen magnetischen Teilchen in Schichtsystemen, analysieren. Wesentlich ist dabei, das "Umschalten" von elektromagnetischen Elementen darstellen zu können. Denn dieses liegt dem Prinzip, digitale Information in binären Codes von "1" und "0" darzustellen, zugrunde. An der FH St. Pölten werden dazu nun unterschiedliche Simulationstechniken wie stochastische Optimierungsalgorithmen und Randelementeverfahren zur Berechnung magnetischer Felder mit der sogenannten Finite-Elemente-Methode kombiniert: "Dabei handelt es sich um eine Simulationsmethode, die auch in der Statik und der Mechanik für die Konstruktion von Hochhäusern und Brücken eingesetzt wird. Diese Technologie kann man auch auf magnetische Teilchen anwenden, um sich magnetische Spin-Eigenschaften von Elektronen anzuschauen", erläutert Prof. Schrefl. Und gerade dieser Spin könnte der Schlüssel zu revolutionären Fortschritten bei der Entwicklung der zentralen Computerspeicher sein.

So funktionieren selbst die leistungsfähigsten Arbeitsspeicher (RAM - Random Access Memory) noch heute nach dem ursprünglichen Prinzip, das die Speicherung auf Grundlage elektrischer Ladung vorsieht. Hohe Ladung = 1, niedrige Ladung = 0. Ist der Strom weg, passiert aber auch das Gleiche mit der gespeicherten Information. Anders bei der Nutzung des magnetischen Spins von Elektronen. Dieser ist auch ohne Strom stabil und kennt sogar vier Zustände: links, rechts, oben, unten. Neben stromunabhängiger Speicherung ist durch die Nutzung dieser vier Zustände auch eine höhere Speicherdichte möglich.

MAGNETISCHE RAM-POWER

Erste Umsetzung dieses Prinzips sind sogenannte MRAMs (Magnetic Random Access Memory). Diese basieren auf mikroskopisch kleinen, zirka 40x40 Nanometer großen, magnetischen Elementen, deren Verhalten das Team um Schrefl simuliert. Dieser meint dazu: "Unser Ziel ist es, bei den Umschaltprozessen eine Geschwindigkeit von 10 Bit pro Nanosekunde zu erreichen. Doch dieses Ziel ist nur bei einem optimalen Design unter gleichzeitig effizienter Nutzung der Materialeigenschaften möglich." Gleiches gilt für die Optimierung des Festplattendesigns, das bereits auf magnetische Prozesse aufbaut, diese aber laut Prof. Schrefl bei Weitem nicht zu ihrem vollen Potential ausnützt.

Auf der 19th International Conference on Magnetism vom 8. - 13. Juli in Korea werden nun unter dem Motto "Magnetic Memories" von Prof. Schrefl solche Anwendungsgebiete der von ihm entwickelten Simulationsverfahren vorgestellt. Deren Nutzung, davon ist der Experte überzeugt, erlaubt es, die Computer-Power des 21. Jahrhunderts zu maximieren - ohne den aufwändigen Bau zahlloser Prototypen.

Über die Fachhochschule St. Pölten
Die Fachhochschule St. Pölten ist Anbieterin praxisbezogener und leistungsorientierter Hochschulausbildung in den Themengebieten Medien, Informatik, Verkehr, Gesundheit und Soziales. In mittlerweile 16 Studiengängen werden rund 2.000 Studierende betreut. Neben der Lehre widmet sich die FH St. Pölten intensiv der Forschung. Die wissenschaftliche Arbeit erfolgt innerhalb der Kompetenzfelder Medientechnik, Medienwirtschaft, IT-Sicherheit, Simulation, Schienenverkehr, Gesundheit und Soziales. Es erfolgt ein stetiger Austausch zwischen Studiengängen und Instituten, in denen laufend praxisnahe und anwendungsorientierte Forschungsprojekte entwickelt und umgesetzt werden.
Wissenschaftlicher Kontakt:
Prof. Dr. Thomas Schrefl
Fachhochschule St. Pölten
Leiter des Master-Studiengangs
Industrial Simulation
Matthias-Corvinus-Str. 15
3100 St. Pölten
T +43 / (0)2742 / 313 228 - 313
E thomas.schrefl@fhstp.ac.at
W http://www.fhstp.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D
Weitere Informationen:
http://www.fhstp.ac.at

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie