Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computer mit Köpfchen

18.08.2017

Künstliche neuronale Netze entschlüsseln Hirnaktivität bei ausgeführten und vorgestellten Bewegungen

Beim Filtern von Informationen mit Suchmaschinen, als Gegner bei Brettspielen oder zur Erkennung von Bildinhalten: Bei bestimmten Aufgaben ist künstliche Intelligenz der menschlichen längst überlegen. Wie Ideen aus der Informatik auch die Hirnforschung revolutionieren könnten, zeigen nun mehrere Gruppen aus dem Freiburger Exzellenzcluster BrainLinks-BrainTools um den Neurowissenschaftler Privatdozent Dr. Tonio Ball.


Um eine bessere Übertragungsqualität von Hirnsignalen zu erreichen, tragen die Forscher Kontaktgel auf die Elektroden einer EEG-Kappe auf.

Foto: Michael Veit

Im Fachjournal „Human Brain Mapping" demonstrieren sie, wie ein selbstlernender Algorithmus menschliche Hirnsignale entschlüsselt, die von einem Elektroenzephalogramm (EEG) gemessen wurden. Darunter waren zum Beispiel ausgeführte, aber auch bloß vorgestellte Fuß- und Handbewegungen oder eine imaginäre Rotation von Gegenständen. Obwohl ihm keine Merkmale zur Auswertung vorgegeben sind, arbeitet der Algorithmus so schnell und präzise wie herkömmliche Systeme, die für die Lösung bestimmter Aufgaben anhand vorher bekannter Hirnsignal-Eigenschaften entworfen wurden – und sich deswegen nicht in allen Fällen eignen.

Die Nachfrage nach solch vielseitigen Schnittstellen zwischen Mensch und Maschine ist groß: Am Universitätsklinikum Freiburg würde man sie beispielsweise zur Früherkennung epileptischer Anfälle nutzen. Denkbar sind aber auch verbesserte Kommunikationsmöglichkeiten für Schwerstgelähmte oder eine automatisierte Diagnostik in der Neurologie.

„Unsere Software basiert auf Modellen, die vom Gehirn inspiriert sind und sich als äußerst hilfreich dabei erwiesen haben, verschiedene natürliche Signale, wie zum Beispiel Sprachlaute, zu entschlüsseln", sagt der Informatiker Robin Tibor Schirrmeister. Damit umschreibt der Forscher die Methode, die das Team zur Dekodierung der EEG-Daten nutzte: So genannte künstliche neuronale Netze sind das Herzstück des aktuellen Projekts bei BrainLinks-BrainTools.

„Das Tolle an dem Programm ist, dass wir keine Merkmale vordefinieren müssen. Die Informationen werden schichtweise, also in mehreren Instanzen, mittels einer non-linearen Funktion verarbeitet. Somit lernt das System selbst, Aktivitätsmuster von verschiedenen Bewegungen zu erkennen und voneinander zu unterscheiden", erklärt Schirrmeister. Das Modell ist an die Verbindungen zwischen Nervenzellen im menschlichen Körper angelehnt, wo elektrische Signale von Synapsen über Zellfortsätze zum Zellkern und wieder hinaus geleitet werden. „Die Theorien dazu sind schon seit Jahrzehnten im Umlauf, aber erst mit der Rechenleistung heutiger Computer wurde das Modell praktikabel", kommentiert Schirrmeister.

Typischerweise wird die Genauigkeit des Modells mit einer größeren Anzahl von Verarbeitungsschichten besser. Bis zu 31 kamen bei der Studie zum Einsatz. Dabei spricht man von „Deep Learning". Problematisch jedoch war bisher der Umstand, dass die Verschaltung eines Netzwerks nach dem Lernvorgang kaum noch interpretierbar ist. Alle algorithmischen Prozesse passieren unsichtbar im Hintergrund. Deshalb veranlassten die Wissenschaftlerinnen und Wissenschaftler die Software dazu, Karten zu erstellen, anhand derer sie die Dekodierungsentscheidungen nachvollziehen konnten. Jederzeit können die Forschenden dem System neue Datensätze hinzufügen.

„Im Unterschied zu bisherigen Verfahren können wir direkt an die Rohsignale gehen, die das EEG vom Gehirn aufnimmt. Dabei ist unser System mindestens genauso präzise oder sogar besser", fasst Versuchsleiter Tonio Ball den wissenschaftlichen Wert der Studie zusammen. Das Potenzial der Technologie ist noch nicht ausgeschöpft – der Forscher möchte sie mit seiner Gruppe weiterentwickeln: „Unsere Vision für die Zukunft sind selbstlernende Algorithmen, die in der Lage sind, unterschiedlichste Absichten des Nutzers noch zuverlässiger und schneller anhand seiner Hirnsignale zu erkennen. Außerdem könnten solche Algorithmen künftig die neurologische Diagnostik unterstützen."

Originalveröffentlichung
Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann, M, Hutter F, Burgard W, Ball T; Deep learning with convolutional neural networks for EEG decoding and visualization. 2017 Hum Brain Mapp. DOI: 10.1002/hbm.23730. URL: https://arxiv.org/abs/1703.05051

BrainLinks-BrainTools
http://www.brainlinks-braintools.uni-freiburg.de

Kontakt:
Robin Tibor Schirrmeister
Translational Neurotechnology Lab
Exzellenzcluster BrainLinks-BrainTools
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/270-93300
E-Mail: robin.schirrmeister@uniklinik-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/computer-mit-koepfchen

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Modularer Supercomputer weltweit geht am Forschungszentrum Jülich in Betrieb
14.11.2017 | Forschungszentrum Jülich GmbH

nachricht Online-Computerspiele verändern das Gehirn
09.11.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte