Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Caltech und CEA-Léti entwickeln eine Nanostruktur zur Identifizierung und Messung von Molekülen

13.09.2012
Ein gemeinsames Forscherteam des Caltech (California Institute of Technology) und des CEA-Leti (Labor für Elektronik und Informationstechnologien der französischen Behörde für Atom- und alternative Energien) hat einen mechanischen Sensor entwickelt, mit dem die Masse eines einzelnen Moleküls gemessen werden kann.
Die Messung erfolgt über Nano-Komponenten und kann Partikel oder Moleküle in Echtzeit identifizieren. Die Anwendungsbereiche sind vielfältig, z.B. in der medizinischen Diagnostik. Die Fachzeitschrift Nature Nanotechnology berichtete am 26. August 2012 über das neue Instrument.

Das von Forschern des Caltech und des Leti entwickelte Messgerät basiert auf der Verwendung von NEMS (Nano Electro Mechanical System), mit denen sich kleinste Teilchen oder Moleküle aufspüren lassen. Das Messgerät besteht aus einem “Resonanzträger” aus Silizium und ist nur wenige Mikrometer groß. Setzt sich ein Teilchen oder ein Molekül auf diesem “NanoResonator” ab, verändert sich die Schwingungsfrequenz in Abhängigkeit von der Masse des Teilchens.

Zur genauen Bestimmung der Masse muss seine Position auf dem Messgerät, die ebenfalls die Schwingungsfrequenz beeinflusst, ermittelt werden. Die Forscher konnten so aufzeigen, dass die Analyse der Veränderungen der Schwingungsfrequenz ausreicht, um die Position und die Masse des Teilchens genau zu bestimmen.

Die Funktionsweise dieses neuen Werkzeugs wurde durch das Abwiegen eines Moleküls (das Immunglobulin M oder IgM – ein von den Blutimmunzellen erzeugter Antikörper) demonstriert. Anhand der Messungen der verschiedenen Massen der Moleküle auf dem Sensor konnten die Forscher die unterschiedlichen IgM-Typen in der Probe zählen und identifizieren.

Dieses Experiment war nicht nur die erste Analyse eines biologischen Moleküls durch eine Nanostruktur, sondern auch ein wichtiger Schritt, um ihre Verwendbarkeit für biomedizinische Anwendungen zu demonstrieren. In der Zukunft könnte mit diesen Instrumenten das Immunsystem eines Patienten analysiert oder die Diagnose von Autoimmunerkrankungen ermöglicht werden, bei denen z.B. das IgM eine Rolle spielt. Auf längere Sicht könnten Biologen mit diesem Sensor vielleicht sogar die molekularen Mechanismen einer kompletten Zelle untersuchen.

“Dieses Ergebnis zeigt, dass mit der Gründung der Leti Caltech Allianz (2006) eine Struktur geschaffen wurde, in der dank gemeinsam entwickelter Komponenten wissenschaftliche Experimente auf Spitzenniveau durchgeführt werden können”, so Laurent Malier, Direktor der CEA-Leti. Diese Komponenten, die aus Fertigungstechniken der Mikroelektronik stammen, können zudem kostengünstig und in großem Maßstab hergestellt werden.

Quelle: Pressemitteilung der CEA – 29.08.2012 – http://www.cea.fr/le_cea/actualites/pese_molecule-86501

Redakteur: Charles Collet, charles.collet@diplomatie.gouv.fr

Charles Collet | Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie