Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Caltech und CEA-Léti entwickeln eine Nanostruktur zur Identifizierung und Messung von Molekülen

13.09.2012
Ein gemeinsames Forscherteam des Caltech (California Institute of Technology) und des CEA-Leti (Labor für Elektronik und Informationstechnologien der französischen Behörde für Atom- und alternative Energien) hat einen mechanischen Sensor entwickelt, mit dem die Masse eines einzelnen Moleküls gemessen werden kann.
Die Messung erfolgt über Nano-Komponenten und kann Partikel oder Moleküle in Echtzeit identifizieren. Die Anwendungsbereiche sind vielfältig, z.B. in der medizinischen Diagnostik. Die Fachzeitschrift Nature Nanotechnology berichtete am 26. August 2012 über das neue Instrument.

Das von Forschern des Caltech und des Leti entwickelte Messgerät basiert auf der Verwendung von NEMS (Nano Electro Mechanical System), mit denen sich kleinste Teilchen oder Moleküle aufspüren lassen. Das Messgerät besteht aus einem “Resonanzträger” aus Silizium und ist nur wenige Mikrometer groß. Setzt sich ein Teilchen oder ein Molekül auf diesem “NanoResonator” ab, verändert sich die Schwingungsfrequenz in Abhängigkeit von der Masse des Teilchens.

Zur genauen Bestimmung der Masse muss seine Position auf dem Messgerät, die ebenfalls die Schwingungsfrequenz beeinflusst, ermittelt werden. Die Forscher konnten so aufzeigen, dass die Analyse der Veränderungen der Schwingungsfrequenz ausreicht, um die Position und die Masse des Teilchens genau zu bestimmen.

Die Funktionsweise dieses neuen Werkzeugs wurde durch das Abwiegen eines Moleküls (das Immunglobulin M oder IgM – ein von den Blutimmunzellen erzeugter Antikörper) demonstriert. Anhand der Messungen der verschiedenen Massen der Moleküle auf dem Sensor konnten die Forscher die unterschiedlichen IgM-Typen in der Probe zählen und identifizieren.

Dieses Experiment war nicht nur die erste Analyse eines biologischen Moleküls durch eine Nanostruktur, sondern auch ein wichtiger Schritt, um ihre Verwendbarkeit für biomedizinische Anwendungen zu demonstrieren. In der Zukunft könnte mit diesen Instrumenten das Immunsystem eines Patienten analysiert oder die Diagnose von Autoimmunerkrankungen ermöglicht werden, bei denen z.B. das IgM eine Rolle spielt. Auf längere Sicht könnten Biologen mit diesem Sensor vielleicht sogar die molekularen Mechanismen einer kompletten Zelle untersuchen.

“Dieses Ergebnis zeigt, dass mit der Gründung der Leti Caltech Allianz (2006) eine Struktur geschaffen wurde, in der dank gemeinsam entwickelter Komponenten wissenschaftliche Experimente auf Spitzenniveau durchgeführt werden können”, so Laurent Malier, Direktor der CEA-Leti. Diese Komponenten, die aus Fertigungstechniken der Mikroelektronik stammen, können zudem kostengünstig und in großem Maßstab hergestellt werden.

Quelle: Pressemitteilung der CEA – 29.08.2012 – http://www.cea.fr/le_cea/actualites/pese_molecule-86501

Redakteur: Charles Collet, charles.collet@diplomatie.gouv.fr

Charles Collet | Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Störungsfreie Kommunikation für die Fabriken von morgen
22.03.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie