Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Interface für Quantencomputer

22.06.2007
Ein Netz aus verteilten, miteinander kommunizierenden Quantenspeichern - so könnte der Quantencomputer der Zukunft aussehen. Einem Team um Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik (MPQ) ist es nun gelungen, einen essentiellen Baustein eines solchen Rechners zu realisieren.

Wie die Wissenschaftler Tatjana Wilk, Simon Webster, Axel Kuhn und Gerhard Rempe in der Zeitschrift Science (Science Express vom 21. Juni 2007) berichten, konnten sie erstmals den Quantenzustand eines einzelnen Atoms auf ein einzelnes Lichtquant, auch Photon genannt, übertragen. Kernstück dieser Einzel-Atom-Einzel-Photon-Schnittstelle ist ein optischer Resonator, der ein einzelnes Rubidiumatom enthält.

Im ersten Schritt wird ein angeregtes Atom mit dem Photon, das es in den Resonator emittiert, quantenmechanisch verschränkt. Nach erneuter Anregung sendet das Atom ein zweites Photon aus und überträgt darauf seinen Quantenzustand. Da nun die Verschränkung zwischen den beiden emittierten Photonen besteht, lässt sich der Erfolg des Übertragungsprozesses durch die Messung der Eigenschaften der beiden korrelierten Photonen belegen. Die damit realisierte Schnittstelle zwischen einem stationären Quantenspeicher (dem Atom) und einem "fliegenden" Medium (dem Lichtquant) als Überbringer der Botschaft ist eine wichtige Voraussetzung, um skalierbare Quantencomputer zu verwirklichen.

Seit einigen Jahren gibt es verschiedene Quantenysteme, die elementare Quantenrechnungen erfolgreich ausführen können. Bislang bestehen sie aber nur aus einigen wenigen Quantenbits (Qubits) wie Atomen oder Ionen, die in der Quantenwelt die Aufgaben der klassischen Bits übernehmen, und sind von ihrer Struktur her nicht auf Systeme mit sehr vielen Qubits zu erweitern. Eine Idee für einen "skalierbaren" Quantenrechner ist zum Beispiel ein Netz aus vielen kleinen Rechen- oder Speichereinheiten, die miteinander kommunizieren. Die Speichereinheiten können dabei von einzelnen Atomen dargestellt werden, in deren internen Zustand ein Qubit kodiert werden kann. Wird dieser Zustand auf ein Photon übertragen, z. B. in dessen Polarisationszustand geschrieben, dann kann es diese Information über weite Distanzen übertragen.

Die MPQ-Physiker realisieren eine solche Schnittstelle zwischen einzelnen Atomen und Lichtquanten mit einem von zwei hoch reflektierenden Spiegeln gebildeten optischen Resonator. Darin regen sie einzelne Rubidiumatome mit Laserpulsen zum Leuchten an. Die speziellen Eigenschaften des Resonators bringen das Atom dazu, nur Photonen einer bestimmten Frequenz in eine genau definierte Richtung zu emittieren. Mit einem Atom im freien Raum ist dies nicht zu bewerkstelligen.

Das Atom hat bei der Emission des Photons zwei Möglichkeiten: es sendet entweder ein rechts-zirkular oder links-zirkular polarisiertes Photon aus. Aufgrund der Erhaltung des Gesamtdrehimpulses rotiert das zurückbleibende Atom jeweils in die Gegenrichtung, d.h. sein Spin zeigt entsprechend nach oben "UP" bzw. nach unten "DOWN". Wie es für Quantensysteme typisch ist, entscheidet sich das Atom nicht für eine der beiden Möglichkeiten, sondern schlägt beide Wege gleichzeitig ein und befindet sich dann in einem "Superpositionszustand", in dem sich beide Möglichkeiten überlagern. Die Eigenschaften des Atoms und des Photons bleiben dabei korreliert, d.h. eng miteinander verknüpft. Die beiden Teilchen befinden sich also in einer quantenmechanischen "Verschränkung". Nun soll gezeigt werden, dass sich der Quantenzustand des Atoms zuverlässig auf ein zweites Photon übertragen lässt. In einem nächsten Schritt wird deshalb das Atom mit Hilfe eines zweiten Laserpulses zur Aussendung eines zweiten Photons stimuliert. Dabei geht nun der atomare Zustand "UP" in ein links-zirkular polarisiertes Photon über, der Zustand "DOWN" in ein rechts-zirkular polarisiertes. Alle Eigenschaften des gewissermaßen zweideutigen atomaren Zustandes werden dabei auf die Polarisation des zweiten Photons übertragen, so dass die Verschränkung, die zuerst zwischen dem Atom und dem erstem Photon bestand, nun auf die beiden nacheinander emittierten Photonen übertragen worden ist. Einer Reihe von Messungen hat gezeigt, dass die Polarisationszustände beider Photonen stets verschränkt sind. Dies bedeutet, dass sowohl die Atom-Photon Verschränkung bei der ersten Photoemission mit hoher Zuverlässigkeit funktioniert, als auch dass die Schnittstelle zwischen Atom und Photon die Quanteninformation des Atoms vollständig auf das zweite Photon überträgt.

"Mit den einzelnen Atomen und einzelnen Photonen steht nun erstmals eine Schnittstelle zwischen einem digitalen Speicher und einem digitalen Überträger von Quanteninformationen zur Verfügung", betont Prof. Gerhard Rempe. "In einem nächsten Schritt planen wir, Photonen aus zwei Atom-Resonator-Systemen zur Überlagerung zu bringen und dadurch zwei entfernte Quantenspeicher miteinander zu verschränken. Damit erhielten wir ein erstes, wenn auch noch kleines Quantennetzwerk." [T.W. / O.M.]

Originalarbeit:
Tatjana Wilk, Simon C. Webster, Axel Kuhn and Gerhard Rempe
Single-Atom Single-Photon Quantum Interface
(Science Express vom 21. Juni 2007)
Kontakt:
Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dipl. Phys. Tatjana Wilk
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 333
Fax: +49 - 89 / 32905 - 395
E-Mail: tatjana.wilk@mpq.mpg.de
Max-Planck-Institut für Quantenoptik
Presse & Kommunikation
Dr. Olivia Meyer-Streng
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Atom Photon Quantencomputer Resonator Schnittstelle

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Sicheres Bezahlen ohne Datenspur
17.10.2017 | Karlsruher Institut für Technologie

nachricht Saarbrücker Forscher erstellen digitale Objekte aus unvollständigen 3-D-Daten
12.10.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz