Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Uni Stuttgart verfügt über größten Roboterschwarm der Welt

15.02.2007
Wie digitale Agenten das Entscheiden lernen

Mikroroboter werden immer kompakter und gleichzeitig immer leistungsfähiger. Treten sie als Gruppe auf, können die nur knapp drei Zentimeter großen Winzlinge beispielsweise Oberflächen auf Defekte untersuchen oder von vorhandenen Verschmutzungen reinigen.

Der aktuell weltgrößte Schwarm setzt sich aus 300 Mikrorobotern zusammen, die alle am Institut für Parallele und Verteilte Systeme der Universität Stuttgart (Prof. Paul Levi) entwickelt und gefertigt wurden. Die Wissenschaftler untersuchen daran, wie sich die "digitalen Arbeitsbienen" organisieren und wie eine so genannte Schwarmintelligenz entstehen kann.

Roboterschwärme dieser Größe unterscheiden sich von kleinen Robotergruppen hinsichtlich der Koordinations- und Wahrnehmungsprinzipien sowie in ihrer Betätigung. Sie ermöglichen es, zu verstehen, wie die für sich genommen eingeschränkten Agenten in der Lage sind, komplexe gemeinsame Verhaltsweisen zu demonstrieren und Entscheidungen zu treffen. Solche Entscheidungen beruhen jedoch nicht auf individuellen, sondern auf kollektiven Eigenschaften von Robotern. Die Untersuchungen von kollektiven Eigenschaften stehen deshalb im Mittelpunkt der Forschungsaktivitäten.

Als Vorbilder dienen dabei soziale Insekten wie Ameisen und Bienen, deren Schwarmverhalten die Wissenschaftler analysieren und modellieren. In solchen Gruppen ist nur die Masse der Individuen in der Lage, durch die selbstorganisierte Zusammenarbeit und durch die Abstimmung von eigenen Verhaltensregeln die eingegebenen Aufgaben zu erfüllen und somit kollektive Entscheidungen herbeizuführen. Was in der Natur so selbstverständlich scheint, ist bei den "digitalen Bienen" jedoch eine große Herausforderung. Hier gilt es, Wahr-nehmungs-, Steuerungs- und Kommunikationsmechanismen für Mikroroboter zu entwickeln, die aufgrund ihrer geringen Größe und ihres Gewichtes sehr begrenzt sind und trotzdem miteinander und mit ihrer Umgebung lokal agieren sollen.

Hilfreich für die Medizin

Für Forschungsfelder wie die Nano- und Biotechnik sind die Untersuchungen vielversprechend. So bestehen beispielsweise mikrobiologische Systeme aus Millionen von Agenten - hier Bakterien oder Moleküle - , die sich gegenseitig beeinflussen. Versteht man die verborgenen Prinzipien dieser Wechselwirkungen, kann dies für Medizin und Gesundheit sehr hilfreich sein. Gedacht ist insbeson-dere an Inspektions- und "Reparatur"-Arbeiten im Inneren eines menschlichen Organismus. Hierzu sind zwei Wege vorstellbar. So könnten die Silizium-Winzlinge entweder noch kleiner und mit Molekülen "gepaart" werden, um mittels physikalischer (chemischer) Wechselwirkungen gezielt an die jeweiligen Körperstellen manövriert zu werden. Hier könnten sie beispielsweise durch Mikrokameras Überwachungsaufgaben übernehmen und durch Mikrogreifer Adern säubern oder dehnen. Eine andere Vorgehensweise könnte darin bestehen, die "Silizium/Molekül"-Einheiten durch äußere Magnetfelder dorthin zu navigieren, wo sie gebraucht werden. Beide Ansätze sind gegenwärtig noch hoch spekulativ, doch darf nicht übersehen werden, dass ähnliche Gedanken weltweit in den Robotik- und Gen-Laboratorien zu reifen beginnen.

Die Untersuchungen sind eingebunden in das Projekt "Kollektive Mikrorobotik", in dem Wissenschaftler der Universitäten Stuttgart und Karlsruhe zusammenar-beiten. Ihr Ziel ist es, die Prinzipien und Mechanismen der Mikro-Welt zu analysieren und darauf basierend die Hard- und Softwarearchitektur, Verfahren, Methoden und Algorithmen für kollektive technische Systeme zu entwickeln, damit gezielte Selbstorganisationsprozesse zustande kommen.

Als Grundlage für große künstliche Schwärme (ab 100 Mikroroboter) entwickelten Prof. Levi und sein Team die Mikroroboter-Testplattform "Jasmine" an der Universität Stuttgart. Die Roboter haben eine Höhe von 20 Millimetern und eine Grundfläche von 28 auf 26 Millimeter. Um ihre Umgebung wahrzunehmen und autonom navigieren zu können, sind sie mit einem Infrarot-basierten Sensorsystem ausgestattet. Dadurch sind sie in der Lage, Hindernisse zu erkennen, auszuweichen und Entfernungen zu messen. Farbsensoren ermöglichen es den Agenten zudem, bunte Objekte zu erkennen. Die Motivation der Mikroroboter ist übrigens die gleiche wie im echten Bienenschwarm: Wenn die Batterien leer sind, fühlen sie sich "hungrig" und suchen gemeinsam nach "Nahrungsquellen" beziehungsweise der nächsten Ladestation. Und wenn sie die Nahrung nicht finden, sind die Roboter "energetisch" tot.

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Berichte zu: Mikroroboter Roboter Roboterschwarm Wechselwirkung

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Das Gehirn mit „Legosteinen“ modellieren
16.06.2017 | Universität Luxemburg - Université du Luxembourg

nachricht Dehnungsmessung – schnell und vielseitig wie nie
14.06.2017 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie