Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Drittschnellster Supercomputer Deutschlands am Rechenzentrum installiert

09.11.2006
Neuer Landeshöchstleistungsrechner läuft

Am Universitätsrechenzentrum ist die zweite Ausbaustufe des Landeshöchstleistungsrechners installiert worden. Dabei handelt es sich um ein Parallelrechnersystem mit mehr als 3000 Prozessoren und einer Spitzenleistung von über 15 TeraFlop pro Sekunde (1 TeraFlop/s = 1 Billion Rechenoperationen pro Sekunde). Damit reiht sich das System als derzeit drittschnellster Rechner in Deutschland hinter den Höchstleistungssystemen in Jülich und München/Garching ein.

Zusammen mit dem bereits installierten nationalen Höchstleistungsrechner in Stuttgart realisiert das Land Baden-Württemberg damit eine herausragende Infrastruktur für Wissenschaft und Forschung im Land.

Nach dem jetzt erfolgten Abschluss der Hardwareinstallation testet das Rechenzentrum den neuen Supercomputer in den kommenden Wochen ausgiebig und integriert ihn in die Betriebsumgebung. Danach steht das System im Höchstleistungsrechner-Kompetenzzentrum Baden-Württemberg (hkz-bw) sowohl Anwendern aus den Universitäten des Landes als auch Nutzern aus der Wirtschaft zur Verfügung.

Der Parallelrechner HP XC4000 der Firma Hewlett Packard besteht aus 750 Rechenknoten mit je zwei Doppelkernprozessoren des Typs AMD Opteron und einem Hauptspeicher von je 16 GigaByte (109 Byte). Der gesamte Hauptspeicher umfasst zwölf TeraByte (1012 Byte). Professor Dr. Wilfried Juling, der Leiter des Universitätsrechenzentrums, erläutert: „Der große Hauptspeicher des Landeshöchstleistungsrechners ermöglicht es den Wissenschaftlern im Land, natürliche Vorgänge mit einer deutlich höheren Auflösung als bisher numerisch zu simulieren und damit in Bereiche vorzustoßen, die mit früheren Rechnergenerationen nicht zugänglich waren.“

In vielen Bereichen wie beispielsweise in der Materialforschung, der Strömungsforschung, der Elementarteilchenphysik, der Klima- und Umweltforschung oder in den Lebenswissenschaften können nun Probleme gelöst werden, die zuvor im Hinblick auf Komplexität und Genauigkeit als unlösbar galten. Auch das Rechenzentrum koordiniert eine Reihe von Forschungsprojekten, in deren Mittelpunkt die Simulation hoch komplexer physikalischer Phänomene steht und die eine Optimierung der damit verbundenen Probleme zum Ziel haben, so zum Beispiel im Bereich der Biotechnologie, Meteorologie oder Strukturanalyse.

Das Herzstück des neuen Supercomputers bildet das schnelle Kommunikationsnetz (InfiniBand DDR). Allein hierfür wurden 1550 Kabel mit einer Gesamtlänge von mehr als zehn Kilometern verlegt. Über dieses Netzwerk können Daten mit einer Geschwindigkeit von zwei GigaByte pro Sekunde zwischen den einzelnen Rechenknoten übertragen werden. „Dies entspricht der Leistung von circa 16.000 DSL-Anschlüssen und ist die Voraussetzung dafür, dass Hunderte von Rechenknoten gemeinsam an der Lösung eines Problems arbeiten können“, erklärt Professor Juling weiter. Ergänzt wird das System um zusätzliche Login-Knoten für interaktives Arbeiten und ein paralleles Dateisystem für die Datenhaltung mit einer Speicherkapazität von 56 TeraByte.

Nähere Informationen
Professor Dr. Wilfried Juling
Rechenzentrum der Universität Karlsruhe (TH)
Tel. 0721/608-3754
E-Mail: juling@rz.uni-karlsruhe.de

| Universität Karlsruhe (TH)
Weitere Informationen:
http://www.uni-karlsruhe.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mehrkernprozessoren für Mobilität und Industrie 4.0
07.12.2016 | Karlsruher Institut für Technologie

nachricht Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies
07.12.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Bindegewebe unter Strom

08.12.2016 | Biowissenschaften Chemie

Eine Extra-Sekunde zum neuen Jahr

08.12.2016 | Physik Astronomie

Wenn der Fluss krank ist – Fachseminar zu Gewässerökologie und Gewässerschutz

08.12.2016 | Seminare Workshops