Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

XPERO: Roboter lernen durch Experimentieren

22.06.2006
Die Fachhochschule Bonn-Rhein-Sieg ist an dem europäischem Forschungsprojekt XPERO (Robot Learning by Experimentation) beteiligt. Ziel des Projektes ist ist es zu erforschen, ob man Lernen durch Experimentieren soweit formalisieren und in einem Computerprogramm mechanisieren kann, dass auch eine geist- und seelenlose Maschine wie ein Roboter qualitatives, neues Wissen erwerben kann.

Dass Luftballons weich und leicht und Holzklötzchen hart und schwer sind oder dass ein Puzzleteil in eine bestimmte Lage gedreht werden muss, ehe es zum benachbarten Teil oder in die dazugehörige Form passt, all das lernen Kinder lange bevor sie sprechen oder laufen lernen. Auch dass man den Schlüssel an der Tür in eine bestimmte Richtung drehen muss, damit sich die Tür öffnet, findet ein Kind schnell heraus, sobald es den Schlüssel nur zu fassen kriegt. Schon Säuglinge lernen durch beständiges Experimentieren. Schier endlos fliegen Bauklötzchen und sonstiges erreichbare Spielzeug auf den Boden, bis durch dieses Experimentieren das kindliche Konzept der Schwerkraft begriffen ist: "Wenn ich es loslasse, fliegt es nach unten auf den Boden und macht ganz doll Krach." Diese Form des Lernens braucht weder Erklärungen von Eltern, noch Vormachen durch Geschwister noch irgendwelches Lernmaterial. Das Erlernen von "Elementarphysik" durch Experimentieren ist grundsätzlich unbegrenzt.

Das Ziel des europäischen Verbundprojekts XPERO (Robot Learning by Experimentation) ist es zu erforschen, ob man dieses Lernen durch Experimentieren soweit formalisieren und in einem Computerprogramm mechanisieren kann, dass auch eine geist- und seelenlose Maschine wie ein Roboter qualitatives, neues Wissen erwerben kann. Man stelle sich einen Roboter vor, der nur mit elementarsten Fähigkeiten und Wissen ausgestattet ist: Er sollte sich bewegen können, visuelle Wahrnehmung haben und beispielsweise Flächen, Farben und Formen oder gar ein Objekt als zusammengehöriges Ganzes erkennen können. Man stelle sich weiter vor, unser Roboter würde in einen leeren Raum gesteckt, dessen Tür durch große Pappwürfel verstellt ist. Man stelle sich zu guter Letzt vor, unser Roboter verfüge über einen elementaren Selbsterhaltungstrieb, der ihn dazu antreibt, nach neuen Energiequellen zu suchen, um seine Batterien zu laden.

Fragen, die sich das XPERO-Team stellt und auf die es in den nächsten drei Jahren eine befriedigende Antworten zu finden hofft, sind: Mit welchen Mechanismen, mit welchen Funktionen und "kognitiven" Fertigkeiten und mit welchem "angeborenen" Vorwissen muss unser Roboter ausgestattet werden, damit er durch Experimentieren erkennen kann, dass es feste und bewegliche Objekte gibt, und dass manche Objekte den Weg zu Energiequellen blockieren und dass durch Verschieben beweglicher Objekte dieser Weg freigelegt werden kann? Nicht mehr und nicht weniger. Später sollen die beweglichen Objekte dann durch eine Tür ersetzt werden. Auch hier muss unser Roboter durch Experimentieren lernen, was eine Tür ist, was sie für seine Existenz bedeutet und vor allem, wie sie sich durch geschicktes Drehen des Türgriffs öffnen lässt, ohne dass etwa die Funktion des Türgriffs vorher bekannt ist.

... mehr zu:
»Experimentieren »Learning »Roboter »XPERO

Projektleiter Erwin Prassler, Professor im Masterstudiengang für Autonome Systeme an der Fachhochschule Bonn-Rhein-Sieg, ist sich sehr wohl der Ambitioniertheit dieses Ziels bewusst. Stellt Lernen durch Experimentieren doch nicht mehr und nicht weniger als eine völlig neue Form des maschinellen bzw. robotischen Lernens dar. "Wir wissen etwa soviel, wie Christoph Columbus als er in See stach und nach Westen segelte", gesteht Professor Prassler freimütig ein. "Aber wir sind ein hochmotiviertes Team aus sechs führenden Forschungseinrichtungen in Europa. Früher oder später werden wir auf Land stoßen."

Dem XPERO Team, das am 1. April 2006 offiziell die Arbeit aufnahm, gehören neben der Fachhochschule Bonn-Rhein-Sieg das Fraunhofer Institut Autonome Intelligente Systeme, die Technische Universität Wien sowie die Universitäten Verona, Ljubljana und Skopje an.

Ansprechpartner
Professor Dr. Erwin Prassler
Tel. 02241/865-257
E-Mail: erwin.prassler@fh-bonn-rhein-sieg.de

Eva Tritschler | idw
Weitere Informationen:
http://www.fh-bonn-rhein-sieg.de/

Weitere Berichte zu: Experimentieren Learning Roboter XPERO

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie