Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Prozessoren für mehr Akkuleistung

21.09.2005


Intel: 65nm Fertigungsverfahren reduziert Leckströme


Intel



Intel hat ein neues Prozessor-Fertigungsverfahren entwickelt, das die Akkulaufzeit von mobilen Geräten verlängern soll. Die 65nm-Methode zur Fertigung von Mikroprozessoren soll Chips für mobile Plattformen mit kleinem Formfaktor herstellen. Bei welchen Geräten die Prozessoren eingesetzt werden, wollte Intel auf Anfrage von pressetext noch nicht bekannt geben. Möglich sei der Einsatz bei sämtlichen mobilen Geräten vom Handy bis zum Laptop, so Intel-Sprecher Martin Strobel. Anfang 2006 sollen die Mikroprozessoren zur Verfügung stehen, verkauft werden sie im zweiten Quartal des nächsten Jahres.



Das High Performance 65 Nanometer-Verfahren soll gegenüber dem derzeit üblichen 90nm-Verfahren deutliche Vorteile hinsichtlich des Stromverbrauchs als auch der Performance aufweisen. Bei dem Verfahren wurde eine Reihe an Modifikationen am Aufbau des Transistors vorgenommen. Der Energieverbrauch soll reduziert werden, im dem die drei Hauptquellen von Leckströmen, Sub-Threshold-Leakage, Junction-Leakage und Gate-Oxid Leakage, verringert werden. Bei mobilen, Akku-betriebenen Geräten treten selbst im Ruhezustand Leckströme auf. "Die Verlustleistung bei den Testchips war tausendmal geringer als bei dem bisherigen Standardverfahren", sagt Strobel gegenüber pressetext.

"Auf manchen Chips stecken über eine Milliarde Transistoren. Angesichts dieser hohen Zahl wird deutlich, dass sich die Verbesserung der einzelnen Transistoren zu enormen Vorteilen für den gesamten Chip addieren", erklärt Mark Bohr, Leiter des Bereichs Prozessarchitektur bei Intel. Durch den Einsatz des 65nm-Verfahrens bei der Chipherstellung kann die Anzahl der Transistoren auf einem Prozessor im Vergleich zur 90nm-Technologie verdoppelt werden. Die Herstellungskosten fallen um etwa zwei Prozent höher aus. Die Transistoren nach dem 65nm-Verfahren sollen die kleinsten und leistungsstärksten CMOS (komplementäre Metalloxid-Halbleiter)-Transistoren in der Massenproduktion sein. Sie haben eine Gate-Länge von 35nm, die modernsten Transistoren, die in den Pentium 4 Prozessoren verwendet werden haben eine Gate-Länge von 50nm.

Redakteur: Christine Imlinger
email: volo2@pressetext.com
Tel. +43-1-81140-0

Christine Imlinger | pressetext.deutschland
Weitere Informationen:
http://www.intel.com/

Weitere Berichte zu: Akkuleistung Gate-Länge Mikroprozessor Prozessor Transistor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Roboter-Navigation über die Cloud
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Neuer Kaba Zylinder mit Service-Funktion: Zeitlich begrenzter Zutritt für Servicepersonal
07.12.2017 | dormakaba Deutschland GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit