Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Computer menscheln und sich selbst organisieren sollen

25.08.2005


Zwei Projekte von Informatikern der Universität Jena werden im neuen Forschungsschwerpunkt "Organic Computing" durch die Deutsche Forschungsgemeinschaft (DFG) gefördert



Wie müssen die Rechner der Zukunft beschaffen sein? Sie werden auf jeden Fall noch leistungsfähiger sein. Während heutige Hochleistungsmikroprozessoren (Chips) Schaltkreise mit etwa 200 Millionen Transistorfunktionen aufweisen, werden es 2010 wohl schon eine Milliarde sein, prognostizieren die Informatiker. "Allerdings nimmt auch die Komplexität dieser Systeme zu und sie werden heterogener", sagt Prof. Dr. Dietmar Fey von der Universität Jena. "Dabei müssen sie jedoch für uns Menschen bedienbar und beherrschbar bleiben, das ist die neue Herausforderung, der wir uns stellen müssen", so der Informatiker. Es gelte, die Computersysteme der Zukunft an die Belange menschlichen Lebens und Zusammenlebens anzupassen, dazu müssen sie flexibler und autonomer werden und kooperieren, kurz sie müssen "organischer" werden. "Organic Computing" heißt ein neues Schwerpunktprogramm, das die Deutsche Forschungsgemeinschaft (DFG) aufgelegt hat. Unter dem Stichwort fördert sie Forschung, bei der die Voraussetzungen für solche selbst-organisierenden, selbst-optimierenden und selbst-heilenden Computer-Systeme der Zukunft geschaffen werden. Unter den insgesamt 19 Vorhaben, die die DFG jetzt im Rahmen ihres neuen Schwerpunktes fördert, sind zwei Projekte von Informatikern der Friedrich-Schiller-Universität Jena.

... mehr zu:
»Computing »DFG »Molekül »Pixel


Sowohl die Arbeiten von Prof. Dr. Dietmar Fey als auch seines Kollegen Dr. Peter Dittrich, der die ins Jena Center für Bioinformatics eingebettete Nachwuchsgruppe "Biosystemanalyse" leitet, werden für die nächsten zwei Jahre gefördert. Die DFG finanziert je eine volle Stelle, zudem erhalten beide Parteien rund 10.000 Euro Sach- und Publikationsmittel.

In dem Projekt von Prof. Fey geht es um intelligente optische Sensoren. "Um diese zu realisieren, nehmen wir Anleihen bei den großen Insektengemeinschaften in der Natur. Ähnlich wie einzelne Ameisen auf ihrem Weg zur Futterstelle Duftmarkierungen hinterlassen, um Nachfolgenden die Orientierung zu erleichtern, sollen die einzelnen Bildpunkte unseres Sensors ein Signal hinterlassen", erklärt Fey. Die so genannten "Marching Pixels" sollen miteinander kommunizieren und so dem Sensorsystem ermöglichen, ein Objekt zu verfolgen, gar selbsttätig Radius und Kantenlänge eines betrachteten Objektes zu erfassen.

"Von allen meinen Projekten ist dieses das visionärste", sagt Fey. Zentraler Ansatz des Organic Computing sei es, die heute gängigen zentralen Organisations-Strukturen aufzubrechen, erläutert er. Die einzelnen Komponenten sollen eigenverantwortlich arbeiten und nicht auf Anweisungen aus der Zentrale warten.

"Die Natur macht uns das vor", erklärt Dr. Dittrich. So verarbeiten alle biologischen Lebewesen Informationen auf einer chemischen Ebene, etwa bei der Genregulation oder der Steuerung des Immunsystems. "Das Rechenergebnis emergiert aus der Interaktion einer Vielzahl relativ einfacher Einheiten, den Molekülen", erläutert der Leiter der Nachwuchsgruppe. Er bedient sich absichtlich des philosophischen Begriffs Emergenz, der meint, dass höhere Seinsstufen durch neu auftauchende Qualitäten aus niederen entstehen.

"Diese chemische Informationsverarbeitung mittels interagierenden Substanzen wollen wir in die Technik transferieren", so Dittrich. "Die Schwierigkeit besteht darin, dass sich solche Systeme nicht mit unseren gängigen Informatikmethoden programmieren lassen. Denn ein chemisches Programm besteht nicht wie üblich aus einer Folge von Anweisungen, sondern aus einer Menge von Molekülen und den dazugehörigen Reaktionsregeln," illustriert er das Problem. Er will nun neue Programmiertechniken entwickeln. Letztendlich geht es bei beiden Jenaer Projekten darum, die einzelnen Akteure, also Pixel oder virtuelle Informationsmoleküle mit den oben genannten self-X-Eigenschaften auszustatten, so dass sie "organisch" auf Veränderungen der Umgebung reagieren können.

Kontakt:
Prof. Dr. Dietmar Fey
Institut für Informatik der Universität Jena
Ernst-Abbe-Platz 2, 07743 Jena
Tel.: 03641 / 946390
E-Mail: dietmar.fey@uni-jena.de

Dr. Peter Dittrich
Leiter der BMBF-Nachwuchsgruppe "Biosystemanalyse"
Tel.: 03641 / 946460
E-Mail: dittrich@minet.uni-jena.de

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Computing DFG Molekül Pixel

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Sparsame Zeitsynchronisierung von Sensornetzen mittels Zeitreihenanalyse
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Viele glauben, Industrie 4.0 kann man kaufen
24.01.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher spinnen künstliche Seide aus Kuhmolke

24.01.2017 | Materialwissenschaften

Forscher entschlüsseln einen Mechanismus bei schweren Hautinfektionen

24.01.2017 | Medizin Gesundheit

Von Schwefel zu Kohlenstoff

24.01.2017 | Biowissenschaften Chemie