Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Spinstrom" könnte Computer beschleunigen

24.08.2005


Marburger Physiker untersuchen die Dynamik von Spinströmen in Halbleitern - Alternative zu mikroelektronischen Verfahren - Grundlagenarbeit über Spintronik könnte Basis für die Entwicklung von schnelleren und Energie sparenden Computern sein

... mehr zu:
»Elektron »Ladung »Physik »Spin »Spinströme »Spintronik

Spintronik ist eines der Zauberwörter, das die Entwickler künftiger Computer seit etwa einem Jahrzehnt umtreibt. Die Kombination aus den Worten Spin und Elektronik beschreibt eine Technologie, die zusätzlich zu den elektrischen auch die magnetischen Eigenschaften von Elektronen zur Informationsverarbeitung nutzt. Denn strömende Elektronen transportieren nicht "nur" elektrische Ladung von einem Ort zum anderen, sondern auch ihre magnetischen Eigenschaften, ihren "Spin". Lässt sich dieser "Spinstrom" technisch nutzen, könnte dies Computern zu erheblich größerem Rechentempo bei geringerer Leistungsaufnahme verhelfen.

An der Philipps-Universität Marburg hat nun eine Arbeitsgruppe um den Physiker Professor Dr. Stephan W. Koch die im "Zweifarbenanregungsverfahren" durch ultrakurze Laserpulse erzeugten Ströme sowie deren Abklingverhalten detailliert mit quantenphysikalischen Methoden berechnet. "Unsere theoretischen Ergebnisse werden zum einen weitere Experimente motivieren und sind zum anderen auch sehr hilfreich, um das mögliche Anwendungspotenzial von ultraschnell erzeugten Ladungs- und Spinströmen besser zu verstehen", so Stephan Koch. Ihre Ergebnisse stellten die Marburger Forscher in der vergangenen Woche im US-amerikanischen Wissenschaftsjournal Physical Review Letters unter dem Titel "Microscopic Analysis of the Coherent Optical Generation and the Decay of Charge and Spin Currents in Semiconductor Heterostructures" (PRL 95, 086606 (2005), gemeinsam mit Dr. Huynh Thanh Duc und PD Dr. Torsten Meier) vor.


Den Spin eines Elektrons kann man sich vereinfacht als Kreiselbewegung des Elektrons vorstellen, die dieses zu einem kleinen Magneten werden lässt. Der Spin kann nur zwei verschiedene Werte annehmen: Anschaulich beschrieben kreiseln die Elektronen entweder rechts- oder linksherum (bezeichnet als "Spin hoch" beziehungsweise "Spin runter") und verhalten sich dann in einem äußeren Magnetfeld abhängig von ihrer Spinrichtung.

Statt Elektronen fließen Spins

"Während es in heutigen Anwendungen fast ausschließlich auf die elektrische Ladung ankommt, die unabhängig vom Spin immer die gleiche ist", erklärt Koch, "kann man sich zum Beispiel auch Situationen vorstellen, in denen sich Elektronen mit Spin hoch in die eine Richtung bewegen, während jene mit Spin runter in die entgegengesetzte Richtung fließen." Dabei wird dann genauso viel elektrische Ladung in die eine wie in die andere Richtung transportiert, sodass der elektrische Strom gleich Null ist. Spins werden dabei allerdings dennoch transportiert, sodass trotz fehlenden elektrischen Stroms ein "Spinstrom" fließt.

Solche Spinströme sind von großem Interesse für Anwendungen im Bereich der Spintronik, die derzeit weltweit intensiv untersucht werden. Dabei wird im Unterschied zur Elektronik nicht die Elektronenladung benutzt, um elektronische Bauteile zu schalten. Stattdessen dienen Magnetfelder dazu, den Elektronenspin von hoch auf runter und umgekehrt klappen zu lassen. Dies geht schneller und bedarf geringerer Energie.

Anregung von Spinströmen durch Laserlicht

Spinströme lassen sich erzeugen, indem man Halbleiterkristalle und -nanostrukturen mit intensivem Laserlicht bestrahlt. Dieser Vorgang, bei dem auch Ladungsströme entstehen, wird Zweifarbenanregung genannt, weil sich das verwendete Laserlicht aus Wellenzügen zweier verschiedener Frequenzen zusammensetzt. Indem man diese Wellenzüge relativ zueinander zeitlich verschiebt, lässt sich sogar die Richtung des erzeugten Stroms kontrollieren.

Für physikalische Untersuchungen und zukünftige Anwendungen müssen sich Spinströme allerdings sehr schnell erzeugen lassen. Für die Zweifarbenanregung verwendet Stephan Koch darum ultrakurze Laserlichtpulse, deren Dauer nur wenige Femtosekunden (der millionste Teil des millionsten Teils einer Tausendstelsekunde) beträgt. Bereits vor einigen Jahren hatten Physiker im kanadischen Toronto dieses Verfahren vorgeschlagen. Die damit erzeugten "lichtinduzierten" Ströme wurden inzwischen auch experimentell beobachtet, unter anderem von Kochs Kollegen, dem Marburger Halbleiterphysiker Professor Dr. Wolfgang Rühle.

Der lichtinduzierte Strom wird allerdings mit der Zeit schwächer, da sich Elektronen aufgrund ihrer Ladungen gegenseitig abstoßen und auch mit anderen Teilchen im Festkörper zusammenstoßen. "Um künftig starke und möglichst lange fließende Ströme zu erreichen, ist ein genaues theoretisches Verständnis dieser Abschwächungsvorgänge notwendig", so Stephan Koch. Darum führte seine Arbeitsgruppe mit Hilfe von Parallelrechnern aufwändige quantenphysikalische Berechnungen durch, in denen neben der Erzeugung von Ladungs- und Spinströmen auch deren zeitliches Abklingen analysiert wurde. So konnten die Marburger Forscher alle für die Kurzzeitdynamik relevanten Prozesse detailliert beschreiben: die Stromerzeugung durch Anregung mit Zweifarbenlaserlicht auf einer Femtosekundenzeitskala, die gegenseitige Abstoßung der beweglichen Elektronen sowie deren Stöße mit den schwingenden Atomen des Kristalls.

Auffallend dabei ist, so Koch, "dass die Spinströme oft schneller zerfallen als die Ladungsströme und dies auch dann geschieht, wenn jeweils gleich viele Elektronen angeregt werden." Der Grund hierfür liege im wesentlichen darin, dass die Verteilung von Elektronen mit verschiedenen Spins in lichtinduzierten Strömen unsymmetrisch ist. Diese Asymmetrie wird zwar durch die elektrische Wechselwirkung ausgeglichen, dabei geht allerdings Energie verloren. Wenn beide Spins in entgegengesetzte Richtungen laufen, führt dies zu einer recht raschen Abbremsung des Stromes. Bewegen sie sich in dieselbe Richtung, so klingt der Strom langsamer ab.

Die theoretischen Ergebnisse von Stephan Koch und seiner Arbeitsgruppe gestatten es nun, die Stärke und das zeitliche Verhalten der lichtinduzierten Ströme in verschiedensten Halbleiterstrukturen vorherzusagen, und verbessern so das grundlegende Verständnis von dynamischen elektronischen Nichtgleichgewichtsprozessen. "Wir hoffen", sagt Koch, "dass unsere Arbeit viele Arbeitsgruppen motiviert, an der kontrollierten Erzeugung möglichst starker und langlebiger Spinströme zu arbeiten und so diese neue Technologie auch für die Anwendung nutzbar zu machen."

Spintronik teilweise schon im Einsatz

Die Grundprinzipien der Spintronik werden bereits seit Ende der 1980er Jahre erforscht. Während Spinströme noch keinen Eingang in die Anwendung fanden, wird bereits seit 1997 der so genannte Riesenmagnetowiderstand (giant magneto resistance, GMR) industriell in Leseköpfen von Computerfestplatten genutzt. Dabei wird ausgenutzt, dass ein System aus dünnen Materialschichten, in denen die Elektronen jeweils einen anderen Spin haben, sensibel und schnell auch auf sehr schwache Magnetfelder reagiert, indem sich sein elektrischer Widerstand extrem ändert. So wird es möglich, mit kleinsten magnetischen Informationsspeichern zu arbeiten. Ein weiterer Vorteil ist, dass deren Inhalt selbst bei Abschalten des Stroms nicht verloren geht. Darum kommt der spintronische GMR mittlerweile auch in nichtflüchtigen Speichertechnologien wie dem Magneto-resistive Random Access Memory (MRAM) zum Einsatz. Auch als Technologie für Quantencomputer werden die Funktionsprinzipien der Spintronik diskutiert.

Kontakt:

Professor Dr. Stephan W. Koch: Philipps-Universität Marburg, Fachbereich Physik / Wissenschaftl. Zentrum für Materialwissenschaften, Renthof 5, 35032 Marburg
Tel: (06421) 28 21336, E-Mail: s.w.koch@physik.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Elektron Ladung Physik Spin Spinströme Spintronik

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Brain-Computer-Interface: Wenn der Computer uns intuitiv versteht
18.01.2017 | Technische Universität Berlin

nachricht »Lernlabor Cybersicherheit« startet in Weiden i. d. Oberpfalz
12.01.2017 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise