Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Spinstrom" könnte Computer beschleunigen

24.08.2005


Marburger Physiker untersuchen die Dynamik von Spinströmen in Halbleitern - Alternative zu mikroelektronischen Verfahren - Grundlagenarbeit über Spintronik könnte Basis für die Entwicklung von schnelleren und Energie sparenden Computern sein

... mehr zu:
»Elektron »Ladung »Physik »Spin »Spinströme »Spintronik

Spintronik ist eines der Zauberwörter, das die Entwickler künftiger Computer seit etwa einem Jahrzehnt umtreibt. Die Kombination aus den Worten Spin und Elektronik beschreibt eine Technologie, die zusätzlich zu den elektrischen auch die magnetischen Eigenschaften von Elektronen zur Informationsverarbeitung nutzt. Denn strömende Elektronen transportieren nicht "nur" elektrische Ladung von einem Ort zum anderen, sondern auch ihre magnetischen Eigenschaften, ihren "Spin". Lässt sich dieser "Spinstrom" technisch nutzen, könnte dies Computern zu erheblich größerem Rechentempo bei geringerer Leistungsaufnahme verhelfen.

An der Philipps-Universität Marburg hat nun eine Arbeitsgruppe um den Physiker Professor Dr. Stephan W. Koch die im "Zweifarbenanregungsverfahren" durch ultrakurze Laserpulse erzeugten Ströme sowie deren Abklingverhalten detailliert mit quantenphysikalischen Methoden berechnet. "Unsere theoretischen Ergebnisse werden zum einen weitere Experimente motivieren und sind zum anderen auch sehr hilfreich, um das mögliche Anwendungspotenzial von ultraschnell erzeugten Ladungs- und Spinströmen besser zu verstehen", so Stephan Koch. Ihre Ergebnisse stellten die Marburger Forscher in der vergangenen Woche im US-amerikanischen Wissenschaftsjournal Physical Review Letters unter dem Titel "Microscopic Analysis of the Coherent Optical Generation and the Decay of Charge and Spin Currents in Semiconductor Heterostructures" (PRL 95, 086606 (2005), gemeinsam mit Dr. Huynh Thanh Duc und PD Dr. Torsten Meier) vor.


Den Spin eines Elektrons kann man sich vereinfacht als Kreiselbewegung des Elektrons vorstellen, die dieses zu einem kleinen Magneten werden lässt. Der Spin kann nur zwei verschiedene Werte annehmen: Anschaulich beschrieben kreiseln die Elektronen entweder rechts- oder linksherum (bezeichnet als "Spin hoch" beziehungsweise "Spin runter") und verhalten sich dann in einem äußeren Magnetfeld abhängig von ihrer Spinrichtung.

Statt Elektronen fließen Spins

"Während es in heutigen Anwendungen fast ausschließlich auf die elektrische Ladung ankommt, die unabhängig vom Spin immer die gleiche ist", erklärt Koch, "kann man sich zum Beispiel auch Situationen vorstellen, in denen sich Elektronen mit Spin hoch in die eine Richtung bewegen, während jene mit Spin runter in die entgegengesetzte Richtung fließen." Dabei wird dann genauso viel elektrische Ladung in die eine wie in die andere Richtung transportiert, sodass der elektrische Strom gleich Null ist. Spins werden dabei allerdings dennoch transportiert, sodass trotz fehlenden elektrischen Stroms ein "Spinstrom" fließt.

Solche Spinströme sind von großem Interesse für Anwendungen im Bereich der Spintronik, die derzeit weltweit intensiv untersucht werden. Dabei wird im Unterschied zur Elektronik nicht die Elektronenladung benutzt, um elektronische Bauteile zu schalten. Stattdessen dienen Magnetfelder dazu, den Elektronenspin von hoch auf runter und umgekehrt klappen zu lassen. Dies geht schneller und bedarf geringerer Energie.

Anregung von Spinströmen durch Laserlicht

Spinströme lassen sich erzeugen, indem man Halbleiterkristalle und -nanostrukturen mit intensivem Laserlicht bestrahlt. Dieser Vorgang, bei dem auch Ladungsströme entstehen, wird Zweifarbenanregung genannt, weil sich das verwendete Laserlicht aus Wellenzügen zweier verschiedener Frequenzen zusammensetzt. Indem man diese Wellenzüge relativ zueinander zeitlich verschiebt, lässt sich sogar die Richtung des erzeugten Stroms kontrollieren.

Für physikalische Untersuchungen und zukünftige Anwendungen müssen sich Spinströme allerdings sehr schnell erzeugen lassen. Für die Zweifarbenanregung verwendet Stephan Koch darum ultrakurze Laserlichtpulse, deren Dauer nur wenige Femtosekunden (der millionste Teil des millionsten Teils einer Tausendstelsekunde) beträgt. Bereits vor einigen Jahren hatten Physiker im kanadischen Toronto dieses Verfahren vorgeschlagen. Die damit erzeugten "lichtinduzierten" Ströme wurden inzwischen auch experimentell beobachtet, unter anderem von Kochs Kollegen, dem Marburger Halbleiterphysiker Professor Dr. Wolfgang Rühle.

Der lichtinduzierte Strom wird allerdings mit der Zeit schwächer, da sich Elektronen aufgrund ihrer Ladungen gegenseitig abstoßen und auch mit anderen Teilchen im Festkörper zusammenstoßen. "Um künftig starke und möglichst lange fließende Ströme zu erreichen, ist ein genaues theoretisches Verständnis dieser Abschwächungsvorgänge notwendig", so Stephan Koch. Darum führte seine Arbeitsgruppe mit Hilfe von Parallelrechnern aufwändige quantenphysikalische Berechnungen durch, in denen neben der Erzeugung von Ladungs- und Spinströmen auch deren zeitliches Abklingen analysiert wurde. So konnten die Marburger Forscher alle für die Kurzzeitdynamik relevanten Prozesse detailliert beschreiben: die Stromerzeugung durch Anregung mit Zweifarbenlaserlicht auf einer Femtosekundenzeitskala, die gegenseitige Abstoßung der beweglichen Elektronen sowie deren Stöße mit den schwingenden Atomen des Kristalls.

Auffallend dabei ist, so Koch, "dass die Spinströme oft schneller zerfallen als die Ladungsströme und dies auch dann geschieht, wenn jeweils gleich viele Elektronen angeregt werden." Der Grund hierfür liege im wesentlichen darin, dass die Verteilung von Elektronen mit verschiedenen Spins in lichtinduzierten Strömen unsymmetrisch ist. Diese Asymmetrie wird zwar durch die elektrische Wechselwirkung ausgeglichen, dabei geht allerdings Energie verloren. Wenn beide Spins in entgegengesetzte Richtungen laufen, führt dies zu einer recht raschen Abbremsung des Stromes. Bewegen sie sich in dieselbe Richtung, so klingt der Strom langsamer ab.

Die theoretischen Ergebnisse von Stephan Koch und seiner Arbeitsgruppe gestatten es nun, die Stärke und das zeitliche Verhalten der lichtinduzierten Ströme in verschiedensten Halbleiterstrukturen vorherzusagen, und verbessern so das grundlegende Verständnis von dynamischen elektronischen Nichtgleichgewichtsprozessen. "Wir hoffen", sagt Koch, "dass unsere Arbeit viele Arbeitsgruppen motiviert, an der kontrollierten Erzeugung möglichst starker und langlebiger Spinströme zu arbeiten und so diese neue Technologie auch für die Anwendung nutzbar zu machen."

Spintronik teilweise schon im Einsatz

Die Grundprinzipien der Spintronik werden bereits seit Ende der 1980er Jahre erforscht. Während Spinströme noch keinen Eingang in die Anwendung fanden, wird bereits seit 1997 der so genannte Riesenmagnetowiderstand (giant magneto resistance, GMR) industriell in Leseköpfen von Computerfestplatten genutzt. Dabei wird ausgenutzt, dass ein System aus dünnen Materialschichten, in denen die Elektronen jeweils einen anderen Spin haben, sensibel und schnell auch auf sehr schwache Magnetfelder reagiert, indem sich sein elektrischer Widerstand extrem ändert. So wird es möglich, mit kleinsten magnetischen Informationsspeichern zu arbeiten. Ein weiterer Vorteil ist, dass deren Inhalt selbst bei Abschalten des Stroms nicht verloren geht. Darum kommt der spintronische GMR mittlerweile auch in nichtflüchtigen Speichertechnologien wie dem Magneto-resistive Random Access Memory (MRAM) zum Einsatz. Auch als Technologie für Quantencomputer werden die Funktionsprinzipien der Spintronik diskutiert.

Kontakt:

Professor Dr. Stephan W. Koch: Philipps-Universität Marburg, Fachbereich Physik / Wissenschaftl. Zentrum für Materialwissenschaften, Renthof 5, 35032 Marburg
Tel: (06421) 28 21336, E-Mail: s.w.koch@physik.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Elektron Ladung Physik Spin Spinströme Spintronik

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Der Form eine Funktion verleihen
23.06.2017 | Institute of Science and Technology Austria

nachricht Zukunftstechnologie 3D-Druck: Raubkopien mit sicherem Lizenzmanagement verhindern
23.06.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften