Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Temporekord bei magnetischen Speicherchips

12.08.2005


Der Computerspeicherchip der kommenden Jahre könnte MRAM heißen. Anders als die heute üblichen Chiptypen "merkt" sich ein MRAM die gespeicherten Informationen, auch wenn zwischenzeitlich der Strom abgestellt wird, und hat darüber hinaus noch weitere Vorteile. Nur in der Geschwindigkeit hinkten die neuen Chips bisher den alten hinterher. Ein Problem, für das Hans Werner Schumacher von der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig jetzt eine Lösung gefunden hat. Mit Hilfe seiner "ballistischen Methode" werden die einzelnen Bits gezielter als bisher angesteuert. So können die Zugriffszeiten auf weniger als 500 ps gesenkten werden und MRAM zukünftig in der Taktrate mit den schnellsten flüchtigen Speicherbauteilen, den SRAM, konkurrieren.



Die heute üblichen schnellen Computerspeicherchips wie DRAM und SRAM (Dynamic bzw. Static Random Access Memory) haben einen entscheidenden Nachteil: Bei Unterbrechung der Stromversorgung gehen die darauf gespeicherten Informationen unwiderruflich verloren. Abhilfe könnte das MRAM (Magnetic Random Access Memory) schaffen. In einem MRAM wird die digitale Information nicht in Form elektrischer Ladung gespeichert, sondern über die magnetische Ausrichtung von Speicherzellen (Magnetspins). MRAM sind sehr universelle Speicherchips, denn sie erlauben neben der nichtflüchtigen Informationsspeicherung auch einen schnellen Zugriff, eine hohe Integrationsdichte sowie eine unbeschränkte Anzahl von Schreib- und Lesezyklen.

... mehr zu:
»Bit »MRAM »Physics »SRAM »Speicherchip »Taktrate »Zelle


Doch die aktuellen MRAM-Prototypen sind noch nicht schnell genug, um die besten Konkurrenten zu überflügeln. Die Zeit für die Programmierung eines magnetischen Bits beträgt etwa 10 ns. Wer dies beschleunigen will, stößt an Grenzen, die mit den grundlegenden physikalischen Eigenschaften der magnetischen Speicherzellen zu tun haben: Während des Programmiervorgangs wird nicht nur die gewünschte Speicherzelle magnetisch angeregt, sondern auch eine Vielzahl anderer Zellen. Diese Anregungen sind nur schwach gedämpft, das Abklingen kann bis zu etwa 10 ns dauern und währenddessen kann keine weitere Zelle des MRAM-Chips programmiert werden. So ist die maximale Taktrate von MRAM bisher auf etwa 100 MHz begrenzt [4].

Das in der PTB Braunschweig entwickelte neue Bitansteuerungsverfahren umgeht diese Begrenzung [1-3]. Kernidee der so genannten "ballistischen Bitansteuerung" (engl. "ballistic bit addressing") ist es, die zur Programmierung dienenden Magnetpulse so geschickt zu wählen, dass die anderen Zellen im MRAM so gut wie gar nicht magnetisch angeregt werden. Der Puls sorgt dafür, dass die Magnetisierung einer zu schaltenden Zelle eine halbe Präzessionsdrehung (180°) vollführt, während eine Zelle, deren Speicherzustand unverändert bleiben soll, eine volle Präzessionsdrehung (360°) beschreibt. In beiden Fällen ist die Magnetisierung nach Abklingen des Magnetpulses im Gleichgewichtszustand und es treten keine magnetischen Anregungen mehr auf.

Diese optimale Bitansteuerung funktioniert mit ultrakurzen Schaltpulsen von unter 500 ps Dauer. Somit liegen die maximalen Taktraten des MRAM über 2 GHz. Zusätzlich ist es möglich, mehrere Bits gleichzeitig zu programmieren, wodurch die effektive Schreibrate pro Bit nochmals um über eine Größenordnung gesteigert werden könnte. Damit können nun erstmals nichtflüchtige Speicherbauteile gebaut werden, die in der Taktrate mit den schnellsten flüchtigen Speicherbauteilen, den SRAM, konkurrieren können.
(es)

[1] H. W. Schumacher: European Patent Application
Application No.: EP05000667, Filing Date: 14/01/2005.
[2] H. W. Schumacher: "Ballistic bit addressing in a magnetic memory cell array"
Applied Physics Letters 87, 042504 (2005).
[3] H. W. Schumacher: "Ultra fast bit addressing in a magnetic memory matrix"
Journal of Applied Physics, issue of August 1st 2005.
[4] H. W. Schumacher, C. Chappert, R. C. Sousa, P. P. Freitas:
"Effective bit addressing times for precessional switching of magnetic memory cells"
Journal of Applied Physics 97, 123907 (2005).

Kontakt:
Dr. Hans Werner Schumacher
PTB-Arbeitsgruppe 2.53 "Niedrigdimensionale Elektronensysteme"
Bundesallee 100
38116 Braunschweig
Telefon: (05 31) 592 - 24 14
Fax: (05 31) 592 - 22 05
E-Mail: hans.w.schumacher@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de

Weitere Berichte zu: Bit MRAM Physics SRAM Speicherchip Taktrate Zelle

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Vom Gehirn zur Robotik: Algorithmen verarbeiten Sensordaten wie das Gehirn
25.09.2017 | Universität Ulm

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops