Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Software identifiziert RNA-Gene

22.02.2005


Wissenschaftler der Universität Leipzig und des österreichischen Bioinformatik-Integrations Netzwerkes entwickelten eine Software, mit der sogenannte RNA-Gene in Genomen identifiziert werden können - ein Schritt auf dem Wege der Entschlüsselung der "dunklen Materie der Biologie".



Als "dunkle Materie der Biologie" bezeichnete man lange Zeit jene Bestandteile des Genoms, die das Ablesen von Proteinen aus Genen "nur" unterstützen und die einer wissenschaftlichen Untersuchung schwer zugänglich waren. Zu diesen Bestandteilen gehören Ribonukleinsäuren (kurz RNAs genannt), die sich durch ein Sauerstoff- und ein Wasserstoffatom (also eine Hydroxylgruppe) von der Desoxyribonukleinsäuren (kurz DNAs genannt) unterscheiden. Durch die zusätzliche Hydroxylgruppe ist die RNA relativ instabil und im Experiment schwerer zu fassen. In der Natur werden RNA-Moleküle jedoch duch die Ausbildung von Strukturen stabilisiert.

... mehr zu:
»Genom »Hydroxylgruppe »RNA »RNA-Gen


Die Bedeutung der RNA wurde lange unterschätzt. Erst in jüngster Zeit erkannte man deren eigenständige Rolle z.B. bei der Regulation der Gene. Desto dringlicher stellte sich die Aufgabe, neben den relativ leicht zu entschlsselnden Genen, von denen Proteine abgelesen werden, auch die RNA-Gene zu identifizierenden. Genau das ist jetzt den Wissenschaftlern um den Bioinformatiker Peter Stadler vom Institut für Informatik der Universität Leipzig und seinen österreichischen Kollegen Stefan Washietl und Ivo Hofacker vom Bioinformatik-Integrations Netzwerk des österreichischen Genomforschungsprogramms GEN-AU gelungen.

Dazu koppelten die Wissenschaftler eine vergleichende Sequenzanalyse mit einer Strukturvorhersage. Letztere beruht darauf, dass besonders stabile Strukturen ein Indiz für RNA-Gene sind. Das Programm der Bioinformatiker modelliert gleichsam unzählige molekulare Verbindungen und isoliert die stabil erscheinenden. Auf dieser Grundlage durchforstet man dann die Genome verschiedener Organismen nach jenen stabilen Molekülen, die etwa beim Menschen ebenso vorkommen wie bei der Maus oder beim Zebrafisch. "Das ist ein untrügliches Kennzeichen für die biologische Relevanz der molekularen Struktur und erlaubt ihre Identifizierung als RNA-Gen.", erklärt Prof. Peter Stadler.

Große Genauigkeit und hohe Geschwindigkeit der Analyse sind das Markenzeichen der neuen Software. Es ist prinzipiell anwendbar für alle Lebewesen vom Bakterium über Pflanzen bis zum Menschen. Zudem kann auf das Programm unter http://www.tbi.univie.ac.at/~wash/RNAz weltweit frei zurückgegriffen werden.

Nächster Schritt soll die vollständige Inventarisierung struktureller RNAs im menschlichen Genom sein. "Wir hoffen, dass die Methode der ’computational RNomics’ (wie die Bioinformatik der RNA Moleküle in Fachjargon genannt wird) zur Entdeckung weiterer Räume in der expandierenden RNA-Welt zellulärer Mechanismen führen wird", resümiert Prof. Stadler die Arbeit seines Teams.

Die Wissenschaftler veröffentlichten ihre Arbeit jetzt in der renommierten Zeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) http://www.pnas.org/cgi/content/full/pnas.

Weitere Informationen:
Prof. Dr. Peter F. Stadler
Telefon: 0341 - 14 95 120
E-Mail: studla@tbi.univie.ac.at

Dr. Bärbel Adams | idw
Weitere Informationen:
http://www.tbi.univie.ac.at/~wash/RNAz
http://www.pnas.org/cgi/content/full/pnas
http://www.izbi.de

Weitere Berichte zu: Genom Hydroxylgruppe RNA RNA-Gen

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics