Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Students Build Rover to Explore Old Mines

18.11.2004


The mine rover captures a video image of the photographer taking its photo. The photographer’s image has been sent from the rover camera (black object just to the right of the light at the front of the rover) to the computer screen.


Abandoned mines — remnants of Old West mining booms — closely guard their secrets in the forgotten corners of Arizona’s backcountry.

... mehr zu:
»Dooley »Robotics »UA’s

"What’s inside? What’s concealed just around that bend in the tunnel?" are the inevitable questions that hikers and others ask when they stumble across these slumbering relics.

Those can be dangerous questions.


Crumbling walls and ceilings that threaten to collapse at the slightest touch; hidden, vertical shafts; poisonous gases; or wildlife lurking inside are just some of the dangers that prevent the non-suicidal from exploring.

Still, the question remains: What’s inside?

Two Aerospace Engineering seniors from the University of Arizona have asked that question about a mine near Congress, Arizona — and they’re about to find the answer without risking their lives.

They’ve built an 18-inch-long, radio-controlled rover to do the looking for them. It’s equipped with a powerful searchlight to explore the mine’s dark recesses and a pan-and-tilt video camera to send images back to their laptop computer.

The mine rover captures a video image of the photographer taking its photo. The photographer’s image has been sent from the rover camera (black object just to the right of the light at the front of the rover) to the computer screen.

"Jessica Dooley and I made the ground rover to tour a mine on her grandmother’s property," said Keith Brock. "The mine shaft is too small and too dangerous for us to explore ourselves, so we thought we could make a rover to do it for us. We want to see if there is anything cool inside."

From Concept to Prototype in Three Weeks

Dooley and Brock are veterans of UA’s Aerial Robotics Club, which builds robotic airplanes that fly themselves and send back video images of remote targets. With that kind of background, designing and building a ground rover didn’t take long — about three weeks, including the time needed to write the software in Visual Basic.

This just-for-fun project is in addition to their full-time engineering studies. Dooley also has a 20-hour-a-week, work-study program at Raytheon and works on research in UA’s Lunar and Planetary Laboratory, designing parachutes that will be used to land probes on distant moons and planets. Meanwhile, Brock is on leave from his internship at Raytheon to work on an active-flow-control project in an Aerospace and Mechanical Engineering research lab. That project focuses on finding ways to control aircraft without using moving control surfaces or wing warping. In their "spare time," they’re also designing a helicopter autopilot for the Aerial Robotics Club. So how did they fit the mine rover project into their already overloaded schedules? "When you’re really passionate about something, you just stay up late," Dooley said.

Getting Into the Technical Details

The rover is about 1.5 square feet in area and seven inches tall. It can be controlled with a joystick, computer mouse or cursor tracking. The cursor tracking or "mouse tracking" is linked to the rover’s video camera. Move the cursor to a point on the image sent back from the video camera, and the video camera will center over that part of the image where the cursor lies. "If you have a moving object, you can follow it with the mouse and the camera will automatically stay centered on it," Brock said.

With the hatch off, the rover electronics can be seen to include:

  • Lithium polymer batteries (red block at the bottom and yellow blocks on the sides)
  • Servos that drive the wheels (black boxes next to the red battery)
  • A 900 MHz wireless modem (center, under white label)
  • A servo-driver board (top left green board) that allows the remote computer to send signals to the servos.
  • A DC-to-DC converter (small board at top center) that has outputs for several voltages to power the rover’s various electronic components.

The rover communicates with the computer outside the mine through a 900 MHz radio modem that MaxStream donated to the project. It has a seven-mile range line-of-sight and a half-mile range in dense urban areas. Although they haven’t tried it yet, Dooley and Brock believe this will give them sufficient power to communicate with the rover around corners in the mine.

But they still plan to tie a cord to the rover, just in case they need to drag it out or if it dives into a hidden, vertical shaft.

Two servos designed for quarter-scale model airplanes drive the rear wheels, which originally were intended for radio-controlled, off-road, model cars. The servos have a 19 inch-pound rating and will push the rover to a maximum speed of 1.6 mph, although it will rarely move that fast while exploring mines.

Brock and Dooley originally wanted to use tank-treads instead of wheels, but couldn’t find a suitable system. "We’re still working to upgrade this because the rover can’t spin on itself now and because we’re afraid that it might get high-centered on rocks or other bumps in the mine floor," Brock said.

The rover’s large wheels are centered on the body and the students originally designed it so that it could turn over and still be driven. "But then we wanted a big, pan-and-tilt camera," Brock said. "So now it can’t turn over. But we could remove that camera and use a really small pinhole camera like those found in security systems. That would be smaller in height and we could drive right-side-up or upside-down."

Combining Standard Components With Plenty of Know-How

The rover is built entirely from off-the-shelf components, most of which were not intended for use in this kind of project. But a considerable amount of expertise in robotics was needed to assemble them into a functioning rover. With the donated radio modem and other parts that Brock and Dooley had lying around in their well-stocked junk box, they were able to build the robot for about $200. They estimate that building it from scratch with all-new parts would cost about $1,000.

Depending on what they find inside the mine, they may add extra features in the future, such as a winch or robotic arm to drag out artifacts. They also might equip the robot with a grinding tool so that it could scrape away the surface oxidation on rocks to expose fresh rock underneath, much as the Mars rovers are doing now on the Red Planet.

This kind of robot also could have many other uses, Brock noted. It could become a mobile base for model rockets. "You could mount the rocket, then drive it out and launch it," he said. Or you could equip it with chemical or biological sensors to investigate suspicious packages or vehicles.

Dooley also said a Palm Pilot might be in the robot’s future. "Palm Pilots are pretty powerful now," she said. "You can do a lot with them, and it would be cool to walk out there with just the rover and a Palm pilot."

Ed Stiles | UA News
Weitere Informationen:
http://www.arizona.edu

Weitere Berichte zu: Dooley Robotics UA’s

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ergonomie am Arbeitsplatz: Kamera erkennt ungesunde Bewegungen
24.04.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht TU Ilmenau entwickelt Chiptechnologie von morgen
20.04.2017 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung