Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroflüssigkeiten für eine neue Generation von Computerchips

15.06.2004


Um Rechner noch leistungsfähiger und dabei energiesparender zu machen, müssen Computerchips mit wesentlich kleineren Strukturen als bisher produziert werden. Heutzutage bilden Excimer-Laser mit Wellenlängen von 248 bzw. 193 nm die integrierten Schaltkreise auf den Silizium-Wafern ab. Weltweit arbeiten Forschergruppen an Strahlquellen mit erheblich kürzeren Wellenlängen. Die Microliquids GmbH in Göttingen geht einen anderen Weg, um Strahlung im extrem ultravioletten bis weichen Röntgenbereich zu generieren.


Strahl aus flüssigem Xenon in Hochvakuum - Kammer (Quelle: Microliquids GmbH)



Das junge Spin-off zweier Max-Planck-Institute und der Universität in Göttingen bedient sich dafür der Erzeugung und Anwendung von Mikroflüssigkeiten: 10-100 Mikrometer dünne Strahlen werden unter hohem Druck durch ein Düse gepresst. Der so entstehende, über mehrere Zentimeter stabile Mikroflüssigkeitsstrahl bleibt auch im Vakuum stabil! Derzeit relevantestes Medium ist mit Hilfe einer Kühltechnik verflüssigtes Xenon. Bei der Fokussierung eines Leistungsstarken Lasers auf diesen Flüssig-Xenonstrahl wird ein Plasma generiert, welches Strahlung im Bereich von 13,5 nm emittiert. Dabei werden Xenonatome mehrfach ionisiert, die emittierte Strahlung resultiert aus verschiedenen elektronischen Übergängen in den Atomrümpfen. Mit Hilfe dieser kurzen Wellenlängen ist es nun möglich, 10-fach kleinere Strukturen auf integrierten Schaltkreisen abzubilden. Doch nicht nur Xenon eignet sich als sog. Target für die Erzeugung kurzwelliger Strahlung. Je nach verwendetem Medium lassen sich Wellenlängen zwischen 2 und 20 nm erzeugen.



Neben der EUV-Lithographie finden sich weitere interessante Anwendungen dieser Technologie in der Röntgen-Mikroskopie und der Röntgen-Spektroskopie. Mikroflüssigkeiten werden außerdem in der Analytik von Biomolekülen und in der Erzeugung von monodispersen Nanopartikeln eingesetzt.

Microliquids ist Mitglied im PhotonicNet, dem niedersächsischen Kompetenznetz für Optische Technologien. Das junge Unternehmen wird seine Technologie bei der diesjährigen Optatec (22. bis 25. Juni) auf dem Gemeinschaftsstand der Kompetenznetze unter dem Dach von OptecNet Deutschland - Halle 3, Stand C60 / C63 - präsentieren.

Kontakt:

Microliquids GmbH
Dr. Tim Spangenberg
Hans-Adolf-Krebs Weg 1, 37077 Göttingen
Tel.: 0551 / 30 724 -160, Fax: -162

Dipl. Biol. Anja Nieselt-Achille | idw
Weitere Informationen:
http://www.microliquids.de

Weitere Berichte zu: Computerchip Erzeugung Mikroflüssigkeit Strahlung Wellenlänge

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie