Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenspeicher auf kleinstem Raum

25.03.2004


Die Informationsgesellschaft erzeugt immer mehr Daten, die gesichert werden müssen. Diese Datenflut digitaler Informationen lässt die Grenzen herkömmlicher Speichersysteme langsam sichtbar werden. Hologramme dagegen können in Medien von der Größe eines Zuckerwürfels bereits ein Terabyte Daten erfassen. Forscher am Institut für Angewandte Physik der Westfälischen Wilhelms-Universität Münster haben ein kompaktes und höchst effizientes holographisches Speichersystem entwickelt, das ohne bewegliche Komponenten auskommt und Datenverarbeitung und Datenverschlüsselung mit integriert.



Dabei speichert ein Laser in einem optischen Speichermaterial elektronische Datenmuster als Seiten ab. Auf einer Seite finden Millionen von Bits Platz, auf ein Speichermedium passen Tausende solcher Seiten. Mindestens genauso faszinierend sind die extrem schnellen Zugriffsmöglichkeiten: da alle auf einer Seite gespeicherten Daten gleichzeitig abgerufen werden, sind Datentransferraten von Gigabyte pro Sekunde und Zugriffszeiten weit unter einer Millisekunde möglich.



Die Datenspeicherung ist eine der großen Herausforderungen des ständig expandierenden Multimediamarktes. Datenarchivierung in Bibliotheken, in der Medizin oder im Bereich der Kunst verlangen nach hochkapazitiven Speichern, die ganze Bildseiten auf einmal speichern können. Gleichzeitig explodiert der Speicherbedarf im digitalen Datenbereich. Videodatenbanken, Netzwerkdienste oder Satellitenkommunikation sind einige der Gebiete, in denen in Zukunft Terabytes von Daten gespeichert und in wenigen tausendstel Sekunden abrufbereit sein müssen. CD oder DVD können die Datenflut derzeit gerade noch bewältigen, den künftigen Bedarf an Speicherkapazitäten werden sie trotz neuer Entwicklungen jedoch bei weitem nicht abdecken können.

Hologramme dagegen gelten durch ihre parallele Speicherung als die Datenspeicher der Zukunft. Der Grundgedanke der Holographie besteht darin, das vollständige, von einem Objekt ausgehende Wellenfeld zu speichern. Aufbauend auf diesem Prinzip haben Prof. Dr. Cornelia Denz und ihre Mitarbeiter ein kompaktes und vollständig automatisch durch einen Rechner gesteuertes Speicher- und Bildverarbeitungssystem entwickelt. Dabei wird ein blauer Laserstrahl in einen Referenz- und einen Datenstrahl gespalten. Ein Flüssigkristalldisplay prägt die analogen Bilddaten oder das digitale Muster heller und dunkler Datenpunkte dem Lichtstrahl auf. Nachfolgend wird der Bildstrahl im Kristall mit dem Strahl des Referenzarmes überlagert. Dieser ist durch das im Referenzstrahl eingebrachte Flüssigkristallelement speziell zur Speicherung der Bilder kodiert. Nach der Speicherung im Kristall wird dem Element ein neues Phasenmuster aufgeprägt, mit dem ein nachfolgendes Bild unabhängig eingespeichert werden kann. Nachdem alle Bilder abgelegt sind, können sie allein durch Eingabe des entsprechenden Phasenkodes auf dem Referenzarm unabhängig voneinander rekonstruiert und mit einem Sensor aufgezeichnet werden.

Analoge Bilder können direkt gespeichert werden - dies ist insbesondere für die Archivierung von analogen Daten wie zum Beispiel medizinischen Aufnahmen, Kunstsammlungen, archäologischen Funden und Bibliotheksbeständen attraktiv. Digital gespeicherte Daten, wie sie für die Speicherung von Video- oder Satellitendatenbanken benötigt werden, stehen dagegen sofort zur Weiterverarbeitung auf konventionellen Computern zur Verfügung. Das System ermöglicht neben der Speicherung auch die Datenverarbeitung. Dieses Verfahren ist besonders interessant für den Vergleich von Daten, wie beim Vergleich gespeicherter Fingerabdrücke, verschiedener Röntgenbilder oder von Kunstwerken und deren Reproduktionen oder Fälschungen. Schließlich erlaubt der phasenkodierte Speicher auf einfachste Weise eine hochsichere Verschlüsselung der gespeicherten Daten.

Die Vorteile des neuen Speichers, der am 27.März 2004 um 18.30 Uhr in der Fernsehsendung "Neues" vom Sender 3sat ausführlich vorgestellt wird, liegen auf der Hand: hohe Packungsdichten und kurze Zugriffszeiten. Ein zuckerwürfelgroßer Kristall verspricht eine Speicherkapazität im Bereich von einem Terabyte bei Ausleseraten von Gigabyte pro Sekunde und Zugriffszeiten unter einer Millisekunden. Wegen ihrer relativ langsamen Schreibzeiten im Bereich von einigen hundert Millisekunden bis Sekunden pro Datenseite, den attraktiven, schnellen Zugriffszeiten und Datentransferraten, wird heute das Einsatzgebiet solcher Speicher insbesondere in hochkapazitiven Archivdatenbanken gesehen.

Als Herausforderung auf dem Weg zu einem kommerziell konkurrenzfähigen System steht für Prof. Denz die Realisierung kostengünstiger, leicht und reproduzierbar herstellbarer Speichermaterialien im Vordergrund des Interesses. Denn die derzeit genutzten Einkristalle müssen nach einem langwierigen Zuchtprozess gepolt und poliert werden, so dass sie in der Herstellung extrem aufwendig und teuer sind. Neuartige Polymere eröffnen jedoch Möglichkeiten, alternative Volumenmaterialien herzustellen, die sowohl die Datenspeicherung als auch die Informationsverarbeitung erlauben.

Norbert Frie | idw
Weitere Informationen:
http://www.uni-muenster.de/Physik/AP/Denz/index.html

Weitere Berichte zu: Kristall Millisekunde Speicherung TeraByte Zugriffszeit

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Sicheres Bezahlen ohne Datenspur
17.10.2017 | Karlsruher Institut für Technologie

nachricht Saarbrücker Forscher erstellen digitale Objekte aus unvollständigen 3-D-Daten
12.10.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz