Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenspeicher auf kleinstem Raum

25.03.2004


Die Informationsgesellschaft erzeugt immer mehr Daten, die gesichert werden müssen. Diese Datenflut digitaler Informationen lässt die Grenzen herkömmlicher Speichersysteme langsam sichtbar werden. Hologramme dagegen können in Medien von der Größe eines Zuckerwürfels bereits ein Terabyte Daten erfassen. Forscher am Institut für Angewandte Physik der Westfälischen Wilhelms-Universität Münster haben ein kompaktes und höchst effizientes holographisches Speichersystem entwickelt, das ohne bewegliche Komponenten auskommt und Datenverarbeitung und Datenverschlüsselung mit integriert.



Dabei speichert ein Laser in einem optischen Speichermaterial elektronische Datenmuster als Seiten ab. Auf einer Seite finden Millionen von Bits Platz, auf ein Speichermedium passen Tausende solcher Seiten. Mindestens genauso faszinierend sind die extrem schnellen Zugriffsmöglichkeiten: da alle auf einer Seite gespeicherten Daten gleichzeitig abgerufen werden, sind Datentransferraten von Gigabyte pro Sekunde und Zugriffszeiten weit unter einer Millisekunde möglich.



Die Datenspeicherung ist eine der großen Herausforderungen des ständig expandierenden Multimediamarktes. Datenarchivierung in Bibliotheken, in der Medizin oder im Bereich der Kunst verlangen nach hochkapazitiven Speichern, die ganze Bildseiten auf einmal speichern können. Gleichzeitig explodiert der Speicherbedarf im digitalen Datenbereich. Videodatenbanken, Netzwerkdienste oder Satellitenkommunikation sind einige der Gebiete, in denen in Zukunft Terabytes von Daten gespeichert und in wenigen tausendstel Sekunden abrufbereit sein müssen. CD oder DVD können die Datenflut derzeit gerade noch bewältigen, den künftigen Bedarf an Speicherkapazitäten werden sie trotz neuer Entwicklungen jedoch bei weitem nicht abdecken können.

Hologramme dagegen gelten durch ihre parallele Speicherung als die Datenspeicher der Zukunft. Der Grundgedanke der Holographie besteht darin, das vollständige, von einem Objekt ausgehende Wellenfeld zu speichern. Aufbauend auf diesem Prinzip haben Prof. Dr. Cornelia Denz und ihre Mitarbeiter ein kompaktes und vollständig automatisch durch einen Rechner gesteuertes Speicher- und Bildverarbeitungssystem entwickelt. Dabei wird ein blauer Laserstrahl in einen Referenz- und einen Datenstrahl gespalten. Ein Flüssigkristalldisplay prägt die analogen Bilddaten oder das digitale Muster heller und dunkler Datenpunkte dem Lichtstrahl auf. Nachfolgend wird der Bildstrahl im Kristall mit dem Strahl des Referenzarmes überlagert. Dieser ist durch das im Referenzstrahl eingebrachte Flüssigkristallelement speziell zur Speicherung der Bilder kodiert. Nach der Speicherung im Kristall wird dem Element ein neues Phasenmuster aufgeprägt, mit dem ein nachfolgendes Bild unabhängig eingespeichert werden kann. Nachdem alle Bilder abgelegt sind, können sie allein durch Eingabe des entsprechenden Phasenkodes auf dem Referenzarm unabhängig voneinander rekonstruiert und mit einem Sensor aufgezeichnet werden.

Analoge Bilder können direkt gespeichert werden - dies ist insbesondere für die Archivierung von analogen Daten wie zum Beispiel medizinischen Aufnahmen, Kunstsammlungen, archäologischen Funden und Bibliotheksbeständen attraktiv. Digital gespeicherte Daten, wie sie für die Speicherung von Video- oder Satellitendatenbanken benötigt werden, stehen dagegen sofort zur Weiterverarbeitung auf konventionellen Computern zur Verfügung. Das System ermöglicht neben der Speicherung auch die Datenverarbeitung. Dieses Verfahren ist besonders interessant für den Vergleich von Daten, wie beim Vergleich gespeicherter Fingerabdrücke, verschiedener Röntgenbilder oder von Kunstwerken und deren Reproduktionen oder Fälschungen. Schließlich erlaubt der phasenkodierte Speicher auf einfachste Weise eine hochsichere Verschlüsselung der gespeicherten Daten.

Die Vorteile des neuen Speichers, der am 27.März 2004 um 18.30 Uhr in der Fernsehsendung "Neues" vom Sender 3sat ausführlich vorgestellt wird, liegen auf der Hand: hohe Packungsdichten und kurze Zugriffszeiten. Ein zuckerwürfelgroßer Kristall verspricht eine Speicherkapazität im Bereich von einem Terabyte bei Ausleseraten von Gigabyte pro Sekunde und Zugriffszeiten unter einer Millisekunden. Wegen ihrer relativ langsamen Schreibzeiten im Bereich von einigen hundert Millisekunden bis Sekunden pro Datenseite, den attraktiven, schnellen Zugriffszeiten und Datentransferraten, wird heute das Einsatzgebiet solcher Speicher insbesondere in hochkapazitiven Archivdatenbanken gesehen.

Als Herausforderung auf dem Weg zu einem kommerziell konkurrenzfähigen System steht für Prof. Denz die Realisierung kostengünstiger, leicht und reproduzierbar herstellbarer Speichermaterialien im Vordergrund des Interesses. Denn die derzeit genutzten Einkristalle müssen nach einem langwierigen Zuchtprozess gepolt und poliert werden, so dass sie in der Herstellung extrem aufwendig und teuer sind. Neuartige Polymere eröffnen jedoch Möglichkeiten, alternative Volumenmaterialien herzustellen, die sowohl die Datenspeicherung als auch die Informationsverarbeitung erlauben.

Norbert Frie | idw
Weitere Informationen:
http://www.uni-muenster.de/Physik/AP/Denz/index.html

Weitere Berichte zu: Kristall Millisekunde Speicherung TeraByte Zugriffszeit

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mehrkernprozessoren für Mobilität und Industrie 4.0
07.12.2016 | Karlsruher Institut für Technologie

nachricht Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies
07.12.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops