Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenspeicher auf kleinstem Raum

25.03.2004


Die Informationsgesellschaft erzeugt immer mehr Daten, die gesichert werden müssen. Diese Datenflut digitaler Informationen lässt die Grenzen herkömmlicher Speichersysteme langsam sichtbar werden. Hologramme dagegen können in Medien von der Größe eines Zuckerwürfels bereits ein Terabyte Daten erfassen. Forscher am Institut für Angewandte Physik der Westfälischen Wilhelms-Universität Münster haben ein kompaktes und höchst effizientes holographisches Speichersystem entwickelt, das ohne bewegliche Komponenten auskommt und Datenverarbeitung und Datenverschlüsselung mit integriert.



Dabei speichert ein Laser in einem optischen Speichermaterial elektronische Datenmuster als Seiten ab. Auf einer Seite finden Millionen von Bits Platz, auf ein Speichermedium passen Tausende solcher Seiten. Mindestens genauso faszinierend sind die extrem schnellen Zugriffsmöglichkeiten: da alle auf einer Seite gespeicherten Daten gleichzeitig abgerufen werden, sind Datentransferraten von Gigabyte pro Sekunde und Zugriffszeiten weit unter einer Millisekunde möglich.



Die Datenspeicherung ist eine der großen Herausforderungen des ständig expandierenden Multimediamarktes. Datenarchivierung in Bibliotheken, in der Medizin oder im Bereich der Kunst verlangen nach hochkapazitiven Speichern, die ganze Bildseiten auf einmal speichern können. Gleichzeitig explodiert der Speicherbedarf im digitalen Datenbereich. Videodatenbanken, Netzwerkdienste oder Satellitenkommunikation sind einige der Gebiete, in denen in Zukunft Terabytes von Daten gespeichert und in wenigen tausendstel Sekunden abrufbereit sein müssen. CD oder DVD können die Datenflut derzeit gerade noch bewältigen, den künftigen Bedarf an Speicherkapazitäten werden sie trotz neuer Entwicklungen jedoch bei weitem nicht abdecken können.

Hologramme dagegen gelten durch ihre parallele Speicherung als die Datenspeicher der Zukunft. Der Grundgedanke der Holographie besteht darin, das vollständige, von einem Objekt ausgehende Wellenfeld zu speichern. Aufbauend auf diesem Prinzip haben Prof. Dr. Cornelia Denz und ihre Mitarbeiter ein kompaktes und vollständig automatisch durch einen Rechner gesteuertes Speicher- und Bildverarbeitungssystem entwickelt. Dabei wird ein blauer Laserstrahl in einen Referenz- und einen Datenstrahl gespalten. Ein Flüssigkristalldisplay prägt die analogen Bilddaten oder das digitale Muster heller und dunkler Datenpunkte dem Lichtstrahl auf. Nachfolgend wird der Bildstrahl im Kristall mit dem Strahl des Referenzarmes überlagert. Dieser ist durch das im Referenzstrahl eingebrachte Flüssigkristallelement speziell zur Speicherung der Bilder kodiert. Nach der Speicherung im Kristall wird dem Element ein neues Phasenmuster aufgeprägt, mit dem ein nachfolgendes Bild unabhängig eingespeichert werden kann. Nachdem alle Bilder abgelegt sind, können sie allein durch Eingabe des entsprechenden Phasenkodes auf dem Referenzarm unabhängig voneinander rekonstruiert und mit einem Sensor aufgezeichnet werden.

Analoge Bilder können direkt gespeichert werden - dies ist insbesondere für die Archivierung von analogen Daten wie zum Beispiel medizinischen Aufnahmen, Kunstsammlungen, archäologischen Funden und Bibliotheksbeständen attraktiv. Digital gespeicherte Daten, wie sie für die Speicherung von Video- oder Satellitendatenbanken benötigt werden, stehen dagegen sofort zur Weiterverarbeitung auf konventionellen Computern zur Verfügung. Das System ermöglicht neben der Speicherung auch die Datenverarbeitung. Dieses Verfahren ist besonders interessant für den Vergleich von Daten, wie beim Vergleich gespeicherter Fingerabdrücke, verschiedener Röntgenbilder oder von Kunstwerken und deren Reproduktionen oder Fälschungen. Schließlich erlaubt der phasenkodierte Speicher auf einfachste Weise eine hochsichere Verschlüsselung der gespeicherten Daten.

Die Vorteile des neuen Speichers, der am 27.März 2004 um 18.30 Uhr in der Fernsehsendung "Neues" vom Sender 3sat ausführlich vorgestellt wird, liegen auf der Hand: hohe Packungsdichten und kurze Zugriffszeiten. Ein zuckerwürfelgroßer Kristall verspricht eine Speicherkapazität im Bereich von einem Terabyte bei Ausleseraten von Gigabyte pro Sekunde und Zugriffszeiten unter einer Millisekunden. Wegen ihrer relativ langsamen Schreibzeiten im Bereich von einigen hundert Millisekunden bis Sekunden pro Datenseite, den attraktiven, schnellen Zugriffszeiten und Datentransferraten, wird heute das Einsatzgebiet solcher Speicher insbesondere in hochkapazitiven Archivdatenbanken gesehen.

Als Herausforderung auf dem Weg zu einem kommerziell konkurrenzfähigen System steht für Prof. Denz die Realisierung kostengünstiger, leicht und reproduzierbar herstellbarer Speichermaterialien im Vordergrund des Interesses. Denn die derzeit genutzten Einkristalle müssen nach einem langwierigen Zuchtprozess gepolt und poliert werden, so dass sie in der Herstellung extrem aufwendig und teuer sind. Neuartige Polymere eröffnen jedoch Möglichkeiten, alternative Volumenmaterialien herzustellen, die sowohl die Datenspeicherung als auch die Informationsverarbeitung erlauben.

Norbert Frie | idw
Weitere Informationen:
http://www.uni-muenster.de/Physik/AP/Denz/index.html

Weitere Berichte zu: Kristall Millisekunde Speicherung TeraByte Zugriffszeit

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Der Form eine Funktion verleihen
23.06.2017 | Institute of Science and Technology Austria

nachricht Zukunftstechnologie 3D-Druck: Raubkopien mit sicherem Lizenzmanagement verhindern
23.06.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften