Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler aus dem Weierstraß-Institut optimieren den Datentransfer in Lichtleitern

15.03.2004


Das Internet von Morgen soll vor allem schnell sein. Und es wird weitaus größere Datenmengen als bisher bewältigen müssen. Um Staus zu vermeiden, arbeiten Berliner Forscher und Unternehmen daran, mehr Platz auf den Datenautobahnen zu schaffen. Der Name des Projekts: Terabit Optics Berlin. Das Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) ist Teil des Konsortiums.



Ziel ist es, mit möglichst kurzen Lichtpulsen viele Nachrichten rasch ineinander verschachtelt zu versenden. Der Sicherheitsabstand auf der Datenautobahn wird quasi verringert. Im Fachjargon heißt die Methode Zeit-Multiplex-Verfahren. Um sie anzuwenden, braucht man jedoch exakt definierte Lichtpulse, die nicht länger als zwei Pikosekunden sein dürfen. Eine Pikosekunde ist eine millionstel Millionstelsekunde ("Zehn hoch minus Zwölf"). Anders gesagt: In einer Sekunde könnten theoretisch 500 Milliarden dieser Piko-Pulse, jeder Träger einer Information, versendet werden - das sind 0,5 Terabit oder die Datenmenge von tausend CDs.

... mehr zu:
»Analysis »Lichtpuls »Stochastik »WIAS


Die exakten Pulse dafür kommen aus Hightech-Lichtquellen. Es darf nichts schief gehen dabei, denn wenn die Lichtpulse in ihrer Intensität oder Frequenz zu stark variieren, können sie am anderen Ende der Datenautobahn nicht mehr auseinandersortiert werden. "Um die Pulszüge ineinander zu verschachteln, müssen sie sehr regelmäßig mit möglichst gleicher Form eintreffen, damit keine Verschmierung oder Überlappung auftritt", erklärt Dr. Uwe Bandelow. Er koordiniert das Terabit-Projekt auf Seiten des WIAS.

Er und seine Kollegen vom WIAS arbeiten mit nichtlinearen partiellen Differentialgleichungen. Es gibt auch vereinfachte Gleichungen, mit denen sich qualitative Aussagen treffen lassen. "Wir prüfen damit zum Beispiel, was passiert, wenn man die Stromzufuhr zum Laser erhöht", sagt Bandelow. Da könne es passieren, dass die Lichtquelle plötzlich chaotische Signale sendet. Änderungen der Bauteile modellieren die WIAS-Experten ebenfalls. Bandelow: "Wir können dann Design-Hinweise geben."

Auch mit den Lichtleitern selbst befassen sich die Forscher. Hier treten neue Probleme auf. Die Lichtpulse ändern sich nämlich auf ihrer Reise. Das hängt mit den Ausbreitungseigenschaften von Licht zusammen und führt dazu, dass aus einem ursprünglich sehr kurzen Blitz mit breitem Spektrum nach achtzig Kilometern Reise durch eine optische Faser ein tausendmal "längerer" Blitz geworden ist. Wenn sich andererseits das Spektrum verbreitert, heißt das nicht anderes, als dass aus einer Farbe mehrere Farben werden. Das ist ebenfalls schlecht für eine saubere Datenübermittlung. Doch auch hierfür gibt es Lösungen, die am WIAS modelliert werden. Dazu gehört zum Beispiel die optimale Länge eines bestimmten Faserabschnitts. Es kann schon reichen, wenn das Stück einen Kilometer länger ist, bevor es an ein weiteres Segment gekoppelt wird, um den Puls wieder "zurechtzustauchen". Im Endergebnis sollen marktfähige Komponenten entstehen, um das Internet der nächsten und übernächsten Generation leistungsfähig zu machen.

Das Verbundjournal ist die Zeitschrift des Forschungsverbundes Berlin e.V. (FVB). Der Forschungsverbund vereint acht natur-, lebens- und umweltwissenschaftliche Forschungsinstitute in Berlin, die alle wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. Alle Institute des FVB gehören zur Leibniz-Gemeinschaft.

Das Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund betreibt als Mitglied der Leibniz Gemeinschaft projektorientierte Forschungen in Angewandter Mathematik, insbesondere in Angewandter Analysis und Angewandter Stochastik, mit dem Ziel, zur Lösung komplexer Problemkreise aus Wirtschaft, Wissenschaft und Technik beizutragen.

Wissenschaftlicher Ansprechpartner:
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstr. 39, 10117 Berlin
Dr. Uwe Bandelow
Tel.: 030/2 03 72-471
Mail: bandelow@wias-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de/zeitung/verbund57.pdf
http://www.wias-berlin.de

Weitere Berichte zu: Analysis Lichtpuls Stochastik WIAS

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein „intelligentes Fieberthermometer“ für Mikrochips
16.01.2018 | Karlsruher Institut für Technologie

nachricht Wie risikoreich sind autonome Systeme im Automobilsektor?
16.01.2018 | Fraunhofer-Institut für Software- und Systemtechnik ISST

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein „intelligentes Fieberthermometer“ für Mikrochips

16.01.2018 | Informationstechnologie

Diagnostik der Zukunft - Europäisches Projekt zur Erforschung seltener Krankheiten startet

16.01.2018 | Förderungen Preise

Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

16.01.2018 | Biowissenschaften Chemie