Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Prozessor erhält ein Gedächtnis

23.10.2003


Die Basis des "Chamäleon-Prozessors" funktioniert im Experiment. Forscher des Paul-Drude-Instituts für Festkörperelektronik haben weitere Studie veröffentlicht


Die Erfinder des magnetischen "Chamäleon-Prozessors" haben selbst bereits nachgewiesen, dass ihr Konzept nicht nur in der Theorie funktioniert. Dieser neuartige Prozessor vereint den Speicher mit der logischen Funktionalität der Recheneinheit - so, als ob die Festplatte rechnen könnte. Das Konzept dazu hatten Forscher des Berliner Paul-Drude-Instituts für Festkörperelektronik kürzlich im Wissenschaftsjournal "Nature" vorgestellt. Die Studie fand ein großes Medienecho.

Weniger hohe Wellen schlug ein Fachartikel in der Zeitschrift Physical Review Letters, in dem eine Reihe von Experimenten zur so genannten Magnetologik dokumentiert ist. Doch diese Studie kann als experimenteller Nachweis für das veröffentlichte Konzept des magnetischen Chamäleon-Prozessors angesehen werden.


Worum geht es? Der Leiter der Arbeitsgruppe am PDI, Reinhold Koch, erläutert die Hintergründe: "Herkömmliche Prozessoren arbeiten mit elektrischem Strom, den sie entweder passieren lassen oder nicht." Gesteuert wird dies durch eine angelegte elektrische Spannung. Es handelt sich also um Schalter, üblicherweise Transistoren auf der Basis von Halbleitermaterialien wie Silizium. Derzeit basieren sowohl die schnellen dynamischen Speicher (DRAM) als auch die Logikelemente im Prozessor auf dieser Technologie. Seit einigen Jahren gibt es Überlegungen, nicht nur die elektrische Ladung als digitale Information (0 und 1) zu verwenden, sondern auch die magnetische Eigenschaft des Elektrons, den "Spin", zu nutzen. "Die Funktionalität des Transistors kann damit erweitert werden", erläutert Koch. Weltweit arbeiten viele Wissenschaftler auf dem Gebiet der "Spintronik" daran, die Spininformation möglichst effizient in den Halbleiter zu bringen. Einen ganz neuen Ansatz verfolgt die "Magnetologik", bei der magnetoresistive Elemente als Logikeinheiten fungieren. Der Trick: Ferromagnetische Materialien, die durch eine unmagnetische Schicht getrennt werden, zeigen einen unterscheidbaren Widerstand in Abhängigkeit von der Orientierung der Magnetisierung (parallel oder antiparallel). Erste schnelle magnetische Speicherelemente (MRAM), die nach diesem Prinzip arbeiten, werden 2005 auf dem Markt kommen und die bisherigen dynamischen Speicher (DRAM) ablösen. Der große Vorteil der magnetischen Speicher: Sie speichern nicht nur, sondern sie können auch "rechnen", da unterschiedliche magnetische Ausgangszustände durch die Nichtflüchtigkeit der Information für die Ausführung von Logikoperationen ausgenutzt werden können.

Im Frühjahr 2003 nun entdeckten die Wissenschaftler des PDI, dass ein dünner Film aus Manganarsenid (MnAs) auf einem Substrat von Galliumarsenid (GaAs) als logischer Schalter mit gleichzeitiger Speicherfunktion dienen kann. Der Film wird per Molekularstrahlepitaxie erzeugt, ein gebräuchliches Verfahren zur extrem dünnen Beschichtung. Wie mit einem Zerstäuber werden Mangan- und Arsen-Atome aufgebracht und bilden eine dünne Lage. Dünn heißt in diesem Fall 60 Nanometer, also sechzig Millionstel Millimeter (0,00006 Millimeter). Die hergestellte MnAs-Schicht ist, wie seit langem bekannt, am leichtesten in der Filmebene zu magnetisieren.

Die Berliner Wissenschaftler entdeckten, dass die leichte Magnetisierung des Films nicht nur mit einem parallelen Magnetfeld, sondern auch mit einem senkrechten Feld umgeschaltet werden kann. Sie erkannten, dass es durch diese Kopplung möglich ist, ein Logik-Bauelement mit zwei unabhängige Inputs aufzubauen. Durch geeignete Auswahl der Magnetfelder gelang es den Wissenschaftlern, sowohl die UND als auch die ODER-Logikfunktion im Labor zu realisieren. Ihr winziges Plättchen funktionierte wie ein Halbleiter-Transistor und behielt die eingegebene Information wie ein Magnet-Speicher auch nach Ausschalten des Stroms. Dabei ist besonders bemerkenswert, dass die Funktionalität des Bauelementes durch einen Setz-Schritt in Echtzeit programmiert werden kann. "Fügt man eine zweite magnetische Schicht hinzu wie im MRAM", ergänzt Carsten Pampuch, "ist die Verneinung der Logikfunktion ebenfalls zu realisieren." Somit stehen alle vier Basisfunktionen (UND; ODER; NICHT-UND; NICHT-ODER) für die Anwendung zur Verfügung. Des weiteren lassen sich durch das senkrechte Schaltfeld neue Konzepte für den Aufbau von MRAM-Strukturen realisieren. Magnetische Bauelemente eröffnen völlig neue Möglichkeiten in der Elektronik: magnetische Prozessoren verbrauchen weniger Strom, erhitzen sich weniger, können ihre Funktionalität verändern und sie erhalten ein "Gedächtnis". Die Wissenschaftler sind äberzeugt, dass so ein Prozessor mit Gedächtnis der Forschung auf dem Gebiet der künstlichen Intelligenz und der selbst lernenden Systeme neue Impulse gibt.

Weitere Informationen:
Reinhold Koch, PDI, 030-20377-414, Andreas Ney, PDI, 030-20377-266, Carsten Pampuch, PDI, 030-20377-266

Quellen: "Magnetologic with a-MnAs Thin Films" von C. Pampuch et al. In Physical Review Letters, Band 91, Nr. 14 "Programmable computing with a single magentoresistive element" von A. Ney et al. in NATURE, Bd. 425, S. 485

Josef Zens | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Funktionalität Gedächtnis PDI Prozessor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Der Form eine Funktion verleihen
23.06.2017 | Institute of Science and Technology Austria

nachricht Zukunftstechnologie 3D-Druck: Raubkopien mit sicherem Lizenzmanagement verhindern
23.06.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften