Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Prozessor erhält ein Gedächtnis

23.10.2003


Die Basis des "Chamäleon-Prozessors" funktioniert im Experiment. Forscher des Paul-Drude-Instituts für Festkörperelektronik haben weitere Studie veröffentlicht


Die Erfinder des magnetischen "Chamäleon-Prozessors" haben selbst bereits nachgewiesen, dass ihr Konzept nicht nur in der Theorie funktioniert. Dieser neuartige Prozessor vereint den Speicher mit der logischen Funktionalität der Recheneinheit - so, als ob die Festplatte rechnen könnte. Das Konzept dazu hatten Forscher des Berliner Paul-Drude-Instituts für Festkörperelektronik kürzlich im Wissenschaftsjournal "Nature" vorgestellt. Die Studie fand ein großes Medienecho.

Weniger hohe Wellen schlug ein Fachartikel in der Zeitschrift Physical Review Letters, in dem eine Reihe von Experimenten zur so genannten Magnetologik dokumentiert ist. Doch diese Studie kann als experimenteller Nachweis für das veröffentlichte Konzept des magnetischen Chamäleon-Prozessors angesehen werden.


Worum geht es? Der Leiter der Arbeitsgruppe am PDI, Reinhold Koch, erläutert die Hintergründe: "Herkömmliche Prozessoren arbeiten mit elektrischem Strom, den sie entweder passieren lassen oder nicht." Gesteuert wird dies durch eine angelegte elektrische Spannung. Es handelt sich also um Schalter, üblicherweise Transistoren auf der Basis von Halbleitermaterialien wie Silizium. Derzeit basieren sowohl die schnellen dynamischen Speicher (DRAM) als auch die Logikelemente im Prozessor auf dieser Technologie. Seit einigen Jahren gibt es Überlegungen, nicht nur die elektrische Ladung als digitale Information (0 und 1) zu verwenden, sondern auch die magnetische Eigenschaft des Elektrons, den "Spin", zu nutzen. "Die Funktionalität des Transistors kann damit erweitert werden", erläutert Koch. Weltweit arbeiten viele Wissenschaftler auf dem Gebiet der "Spintronik" daran, die Spininformation möglichst effizient in den Halbleiter zu bringen. Einen ganz neuen Ansatz verfolgt die "Magnetologik", bei der magnetoresistive Elemente als Logikeinheiten fungieren. Der Trick: Ferromagnetische Materialien, die durch eine unmagnetische Schicht getrennt werden, zeigen einen unterscheidbaren Widerstand in Abhängigkeit von der Orientierung der Magnetisierung (parallel oder antiparallel). Erste schnelle magnetische Speicherelemente (MRAM), die nach diesem Prinzip arbeiten, werden 2005 auf dem Markt kommen und die bisherigen dynamischen Speicher (DRAM) ablösen. Der große Vorteil der magnetischen Speicher: Sie speichern nicht nur, sondern sie können auch "rechnen", da unterschiedliche magnetische Ausgangszustände durch die Nichtflüchtigkeit der Information für die Ausführung von Logikoperationen ausgenutzt werden können.

Im Frühjahr 2003 nun entdeckten die Wissenschaftler des PDI, dass ein dünner Film aus Manganarsenid (MnAs) auf einem Substrat von Galliumarsenid (GaAs) als logischer Schalter mit gleichzeitiger Speicherfunktion dienen kann. Der Film wird per Molekularstrahlepitaxie erzeugt, ein gebräuchliches Verfahren zur extrem dünnen Beschichtung. Wie mit einem Zerstäuber werden Mangan- und Arsen-Atome aufgebracht und bilden eine dünne Lage. Dünn heißt in diesem Fall 60 Nanometer, also sechzig Millionstel Millimeter (0,00006 Millimeter). Die hergestellte MnAs-Schicht ist, wie seit langem bekannt, am leichtesten in der Filmebene zu magnetisieren.

Die Berliner Wissenschaftler entdeckten, dass die leichte Magnetisierung des Films nicht nur mit einem parallelen Magnetfeld, sondern auch mit einem senkrechten Feld umgeschaltet werden kann. Sie erkannten, dass es durch diese Kopplung möglich ist, ein Logik-Bauelement mit zwei unabhängige Inputs aufzubauen. Durch geeignete Auswahl der Magnetfelder gelang es den Wissenschaftlern, sowohl die UND als auch die ODER-Logikfunktion im Labor zu realisieren. Ihr winziges Plättchen funktionierte wie ein Halbleiter-Transistor und behielt die eingegebene Information wie ein Magnet-Speicher auch nach Ausschalten des Stroms. Dabei ist besonders bemerkenswert, dass die Funktionalität des Bauelementes durch einen Setz-Schritt in Echtzeit programmiert werden kann. "Fügt man eine zweite magnetische Schicht hinzu wie im MRAM", ergänzt Carsten Pampuch, "ist die Verneinung der Logikfunktion ebenfalls zu realisieren." Somit stehen alle vier Basisfunktionen (UND; ODER; NICHT-UND; NICHT-ODER) für die Anwendung zur Verfügung. Des weiteren lassen sich durch das senkrechte Schaltfeld neue Konzepte für den Aufbau von MRAM-Strukturen realisieren. Magnetische Bauelemente eröffnen völlig neue Möglichkeiten in der Elektronik: magnetische Prozessoren verbrauchen weniger Strom, erhitzen sich weniger, können ihre Funktionalität verändern und sie erhalten ein "Gedächtnis". Die Wissenschaftler sind äberzeugt, dass so ein Prozessor mit Gedächtnis der Forschung auf dem Gebiet der künstlichen Intelligenz und der selbst lernenden Systeme neue Impulse gibt.

Weitere Informationen:
Reinhold Koch, PDI, 030-20377-414, Andreas Ney, PDI, 030-20377-266, Carsten Pampuch, PDI, 030-20377-266

Quellen: "Magnetologic with a-MnAs Thin Films" von C. Pampuch et al. In Physical Review Letters, Band 91, Nr. 14 "Programmable computing with a single magentoresistive element" von A. Ney et al. in NATURE, Bd. 425, S. 485

Josef Zens | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Funktionalität Gedächtnis PDI Prozessor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie