Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

M-RAM, der Lese - Schreib - Speicher der Zukunft

20.02.2003


Forschern der STIC (Informations- und Kommunikationstechnologien) und der SPM (Physik und Mathematik) Abteilungen des CNRS ist es gelungen, für M-RAM („Magnetic Random Access Memory“, einem Speichertyp, der vor 5 Jahren von IBM entwickelt wurde) eine Schreibgeschwindigkeit zu erreichen, die der Geschwindigkeit der traditionellen Lese - Schreib - Speicher ähnlich ist. Diese Entdeckung könnte es M-RAM ermöglichen, sehr bald in Computern, Handys und Fotoapparaten zum Einsatz zu kommen. Die heutigen Lese - Schreib - Speicher (SDRAM: Synchronous Dynamic random Access Memory, DDRAM: Double Data Random Access Memory) speichern Informationen als elektrische Ladung. Wenn Strom vom Speicher abgeschaltet wird, verschwindet die Information unwiederbringlich. Andere Speicherarten können dieses Problem lösen (z.B. der „Flash“ Speicher). Um jedoch Informationen auf solche Speicher zu schreiben, benötigt man relativ viel Energie und das Schreiben lässt sich nur viel langsamer als mit RAM Speicher vollziehen.

Die M-RAM Technologie, deren Prinzip von den IBM Laboratorien entwickelt wurde, ist in der Lage, die Vorteile beider Speichervarianten zu bündeln. M-RAM ist ein permanenter, nicht volatiler Speicher. Selbst wenn alle Aktivitäten, für die man Strom benötigt, abgeschlossen wären, könnte der Computer wieder genau an dem Punkt ansetzen, an dem die Arbeit beendet wurde. Aus diesem Grund kann das M-RAM Informationen auch gänzlich ohne Strom aufbewahren, wie andere magnetische Speicherformen auch.

CNRS Forscher des Labors für Grundlagenelektronik (IEF) und des Labors für Festkörperphysik (LPS) konnten solch einen Speicher schneller als ein Lese - Schreib -Speicher arbeiten lassen. Die ersten M-RAM Prototypen sind bescheiden (4 Mb im Jahre 2002 von Motorola). Diese Beschleunigung der M-RAM bietet auch neue Anwendungsgebiete: Ersatz für Flash Memories, die in numerischen Fotoapparaten benutzt werden, jedoch sehr langsam sind; und auf dem Gebiet der Weltraumforschung, da die auf Magneten basierende Funktion von Strahlen nicht beeinflusst wird.



Kontakt: Claude Chappert


Institut d’Electronique Fondamentale, Bât 220,
Université Paris-Sud , Centre d’Orsay, 91405 Orsay cedex
+33 1 69 15 40 42

+33 1.69.15.78.41
chappert@ief.u-psud.fr

Jacques Miltat
Laboratoire de Physique des Solides, UMR 8502,
Université Paris-Sud, Bät. 510, 91405 Orsay cedex
+33 1 69 15 53 74
+33 1 69 15 60 86
miltat@lps.u-psud.fr

Quelle: Information Presse CNRS, 6 Februar 2003
Redakteur: Jean-Michel Nataf, France@nusurf.at

Quelle:
Wissenschaft-Frankreich 25, 19.02.2003
Französische Botschaften in Deutschland und in Österreich
Kostenloses Abonnement durch E-Mail : sciencetech@botschaft-frankreich.de

| Wissenschaft-Frankreich Nr. 25
Weitere Informationen:
http://www.u-psud.fr/ief

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics