Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenspeicher dank Zwergkondensatoren

16.06.2008
Deutsch-koreanisches Forscherteam produziert in einem neuen Verfahren permanente Datenspeicher und stellt dabei einen Rekord in der Speicherdichte auf

Immer kleiner und leichter, aber auch schneller und leistungsstärker soll die Elektronik von morgen sein. Eine Methode, die Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik, der Pohang University of Science and Technology (POSTECH) in Korea und des Korea Research Institute of Standards and Science (KRISS) jetzt entwickelt haben, könnte dabei helfen.


Speicherpunkte unter Beobachtung: In der Aufnahme des Rasterelektronenmikroskops (oben) sind oben die Lochmaske und unten die Nano-Kondensatoren zu erkennen. Wie sauber sie gestapelt sind, enthüllt das Querschnittsbild von vier Platin/PZT/Platin-Nano-Kondensatoren im Transmissionselektronenmikroskop (unten). Bild: Max-Planck-Institut für Mikrostrukturphysik


Kondensatoren in der Maske: Durch eine nur rund 100 nm dünne Schablone aus Aluminiumoxid (oben) lässt das deutsch-koreanische Forscherteam erst die Bestandteile der Keramik (PZT) auf die Platinschicht (Pt) rieseln. Anschließend scheiden die Wissenschaftler noch ein wenig Platin ab, um einen elektrischen Kontakt zur Keramik herzustellen. Bild: Max-Planck-Institut für Mikrostrukturphysik

Das neue Verfahren ermöglicht es nämlich, besonders dicht gepackte Datenspeicher herzustellen. Mit Hilfe einer extrem fein perforierten Maske haben die Forscher Kondensatoren aus Platin und Blei-Zirkonat-Titanat (PZT) mit einer Dichte von 176 Milliarden Stück auf einem Quadratzoll untergebracht - das ist Weltrekord für dieses Material. Solche Speicherpunkte lassen sich leicht ansteuern und speichern Information dauerhaft. Chips aus diesem Material könnten daher die derzeitigen Arbeitsspeicher ersetzen, in denen die gespeicherten Bits ständig aufgefrischt werden müssen. (Nature Nanotechnology Advance Online Publication, 15. Juni 2008, doi:10.1038/nnano.2008.161)

Egal ob MP3-Player, Fotohandys, Navigationssysteme oder Notebooks: Sie sollen handlich sein, aber immer mehr Musik, Bilder, Filme oder Landkarten speichern und diese auch schnell verarbeiten. Um Elektronik weiter zu verkleinern und gleichzeitig leistungsfähiger zu machen, brächten neuartige Arbeitsspeicher einen großen Fortschritt. Wenn sie nämlich Informationen permanent speichern und mit Daten dennoch so schnell hantieren könnten wie die DRAMs, auf denen ein PC heute gerade benutzte Programme ablegt. "Solche nichtflüchtigen Speicher könnten mit unserer Methode womöglich besonders einfach und effizient hergestellt werden", sagt Dietrich Hesse, der als Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik in Halle an den Arbeiten des Forscher-Teams maßgeblich beteiligt war.

... mehr zu:
»Datenspeicher »Kondensator

Permanente Datenspeicher aus der deutsch-koreanischen Kooperation können zudem auf diese Weise 176 Milliarden Bits pro Quadratzoll speichern, das sind 27 Milliarden pro Quadratzentimeter - mehr als alle vergleichbaren Speicher dieser Materialklasse. "Wir nähern uns damit Speicherdichten von einigen Terabit, Billionen von Bits, pro Quadratzoll", sagt Dietrich Hesse: "Und wir hoffen, dass wir die Speicherdichte noch weiter steigern können." So hohe Speicherdichten sind eine Voraussetzung, damit permanente Speicher breitere Anwendung finden. Sie könnten etwa die Festplatte und das lästige Booten im PC überflüssig machen. Für den Einsatz als Speicher erfüllen die Nanokondensatoren noch eine weitere Bedingung: Jeden Speicherpunkt können die Wissenschaftler gezielt ansteuern, obwohl sie nur gut 60 Nanometer Abstand voneinander haben. "Diese Arbeit zeigt, dass auch ganz unkonventionelle und bisher nicht beachtete Herstellungsmethoden aus Nachbargebieten der Elektronik-Forschung einen wesentlichen Fortschritt bei der Suche nach Konzepten für hochdichte Festkörperspeicher bringen können", sagt Professor Ulrich Gösele, Direktor am Max-Planck-Institut für Mikrostrukturphysik.

Ihre besonderen Eigenschaften verdanken die Speicher nicht nur der präzisen Herstellung, sondern auch dem Prinzip, nach dem sie arbeiten: Das keramische Material Blei-Zirkonat-Titanat gehört zu den Ferroelektrika. In solchen Materialien gibt es in allen Elementarzellen, den kleinsten Baueinheiten eines Kristalls, permanente elektrische Dipole. Diese lassen sich mit den magnetischen Dipolen im Eisen vergleichen - ein Vergleich, dem die Stoffe ihren Namen verdanken. Wie der Nord- und Südpol eines Magneten lassen sich der positive und negative Pol eines permanenten elektrischen Dipols gezielt vertauschen - allerdings viel schneller. Daher können diese Stoffe Daten permanent speichern wie eine Festplatte, aber so schnell mit ihnen operieren wie ein Arbeitsspeicher. Blei-Zirkonat-Titanat etwa lässt sich mit Hilfe eines äußeren elektrischen Feldes ein Titanion in der Elementarzelle verschieben - zumindest bei Temperaturen unter 460 Grad Celsius; darüber wechselt der Dipol auch ohne äußeres Zutun ständig die Orientierung.

Um aus diesem ferroelektrischen Material 176 Milliarden Kondensatoren auf einem Quadratzoll aufzubauen, haben die Wissenschaftler zunächst eine rund 100 nm dünne Schablone aus Aluminiumoxid hergestellt, die entsprechend löchrig ist. Zu diesem Zweck oxidierten sie einen Aluminiumfilm elektrochemisch - eine Methode, die als Eloxal-Prozess bekannt ist und Aluminiumbauteile seit Jahrzehnten mit einer Schutzschicht versieht und Aluminium-Geschirr, aber auch manchem MP3-Player zu einem farbigen matt-metallischem Schimmer verhilft. Dabei fressen sich gewöhnlich in ungeordnetem Muster Poren in das Aluminiumoxid. Indem die Forscher bei der Oxidation jedoch sorgfältig die Temperatur, den pH-Wert und die chemische Zusammensetzung wählen, zwingen sie die Poren in eine sechseckige Anordnung, in der jede Pore von sechs anderen umgeben ist. Das sechseckige Muster ist allerdings an einigen Stellen ein wenig verzerrt, was sie als Schablone für Datenspeicher unbrauchbar macht. "Wenn wir das Aluminium mit einem Stempel vorstrukturieren, ordnen sich die Poren aber völlig regelmäßig an", sagt Woo Lee vom KRISS. Der Stempel trägt Milliarden von Noppen, die entsprechend viele Dellen in das Aluminium drücken. Diese wiederum dienen der Oxidation als Angriffspunkte, an denen sie die Poren in das Material frisst.

Mit der fein perforierten Maske ist die Sache aber noch nicht erledigt. Die Schablone legen die Hallenser Wissenschaftler auf ein 650 Grad Celsius heißes Plättchen aus Magnesiumoxid, das mit Platin beschichtet ist und als Träger dient. Anschließend verdampfen sie mit einem Laserstrahl in genau austariertem Verhältnis PZT, bis sich die Keramik 30 bis 50 Nanometer dick auf dem Platin niedergeschlagen hat. Ein dünner Deckel aus Platin komplettiert den Kondensator, in dem die beiden Edelmetallschichten als Elektroden und die Keramik als Dielektrikum dienen. "Prinzipiell können wir für die Elektroden auch andere Materialien verwenden", sagt Dietrich Hesse. Auch die hauchdünne Schablone wieder abzuziehen, stellt keine unüberwindbare Hürde dar. Dabei müssen die Wissenschaftler vorsichtig vorgehen, damit sie nicht zerbricht und ein Teil an den Speicherpunkten hängen bleibt. Mit etwas Geschick und einem Stück Tesafilm gelingt es ihnen aber, die Maske problemlos abzulösen. "Nicht ganz selbstverständlich ist dabei, dass nicht einzelne Sandwiches aus Platin und PZT in den Poren hängen bleiben", sagt Dietrich Hesse. "Vermutlich ziehen sich die Kondensatoren, die wir bei 650 Grad aufdampfen, beim Abkühlen etwas zusammen, ehe wir die Maske bei Raumtemperatur entfernen."

Dass diese Arbeit gelungen ist, liegt auch an der fruchtbaren deutsch-koreanischen Kooperation: "Die unbürokratische, enge Zusammenarbeit mit koreanischen Wissenschaftlern, welche ihre jeweils eigenen Fähigkeiten, Erfahrungen und Methoden in die Arbeit eingebracht haben, hat sich hier in besonderer Weise bewährt", unterstreicht Ulrich Gösele.

Dieses Projekt wurde durch die Max-Planck-Gesellschaft, die Volkswagen-Stiftung, die Deutsche Forschungsgemeinschaft, die Korea Research Foundation und das Programm "Brain Korea 21" gefördert.

[PH]

Originalveröffentlichung:

Woo Lee, Hee Han, Andriy Lotnyk, Markus A. Schubert, Stephan Senz, Marin Alexe, Dietrich Hesse, Sunggi Baik und Ulrich Gösele
Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density

Nature Nanotechnology Advance Online Publication: 15. June 2008, DOI 10.1038/nnano.2008.161

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Datenspeicher Kondensator

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Kieler Wissenschaft entwickelt exzellentes Forschungsdatenmanagement
21.08.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Computer mit Köpfchen
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik