Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungsrechner am Institut für Kernphysik simuliert Vorgänge im Innern der Bausteine des Atomkerns

08.05.2008
PC-Clusteranlage wird während vier Tagen installiert - Gesamtkosten von 1,3 Millionen Euro

Am Institut für Kernphysik der Johannes Gutenberg-Universität wird in dieser Woche eine Rechneranlage installiert, die herkömmliche Maßstäbe bei weitem sprengt.

Die PC-Clusteranlage besteht aus 2000 Prozessorkernen, die über ein Hochgeschwindigkeitsnetzwerk miteinander verbunden sind und so gemeinsam an einer Aufgabe arbeiten können. "Diese Anlage ist deutschlandweit der leistungsfähigste Rechner, der von einer Universität für ein einziges Forschungsprojekt in der Kern- und Teilchenphysik betrieben wird", sagt Projektleiter Univ.-Prof. Dr. Hartmut Wittig vom Institut für Kernphysik. Die Investitionen belaufen sich auf insgesamt 1,3 Millionen Euro.

Nach Inbetriebnahme wird der Großrechner den Wissenschaftlern für numerische Simulationen in der Teilchenphysik dienen, insbesondere auch als Begleitung der Experimente am neuen Elektronenbeschleuniger MAMI C der Universität. So soll das Wirken der absolut kleinsten Teilchen unserer Materie besser verstanden werden.

... mehr zu:
»Atomkern »Kernphysik »Rechner

Der Verbund von einzelnen Rechnern wird während vier Tagen vom 6. bis 9. Mai in einen eigens dafür umgebauten Raum am Institut für Kernphysik installiert. Für die 250 Rechenknoten - bestückt mit jeweils zwei Vierkern-Prozessoren von Intel - stehen zwei Schrankreihen bereit, die je 3,60 Meter lang und knapp zwei Meter hoch sind und mit Wasser gekühlt werden. Die Leistung der Klimaanlage entspricht der von 650 haushaltsüblichen Kühlschränken. Ist sie erst einmal in Betrieb, soll die PC-Clusteranlage den theoretischen Kernphysikern ganz neue Möglichkeiten eröffnen, um den Kräften nachzugehen, die in den Kernbausteinen wirken.

Das Interesse der Wissenschaftler gilt dem inneren Aufbau von Protonen und Neutronen, die den Atomkern bilden und ihrerseits aus noch kleineren Quarks bestehen. Der starke Zusammenhalt im Innern eines Atomkerns beruht auf der starken Wechselwirkung, eine der vier fundamentalen Kräfte in der Physik. Die Kräfte, die auf die Quarks wirken, entstehen durch sogenannte Gluonen, die zwischen den Quarks ausgetauscht werden.

Zur Beschreibung dieses Kräftespiels dient die Theorie der Quantenchromodynamik (QCD). "Tatsächlich lassen sich viele Prozesse an Hochenergiebeschleunigern wie etwa am CERN in Genf durch diese Theorie erklären", erklärt Wittig die Ausgangslage. "Wie sich jedoch die unmittelbaren Eigenschaften von Protonen und Neutronen aus der Quantenchromodynamik ableiten lassen, ist noch weitgehend unverstanden. Um dies zu untersuchen reichen Rechnungen mit Bleistift und Papier nicht mehr aus. Aber auch bei der numerischen Behandlung mittels großer Computer stößt man an Grenzen."

Diese Grenzen können nun mit der neuen Rechneranlage weiter hinausgeschoben werden. Um die QCD numerisch untersuchen zu können, setzt man Quarks und Gluonen auf ein vierdimensionales Raum-Zeit-Gitter, in Analogie zu einem herkömmlichen Kristall. Um den Verhältnissen in der Natur möglichst genau zu entsprechen, muss die "Maschengröße" des Gitters immer weiter verfeinert werden. Dies erhöht jedoch drastisch die Zahl der erforderlichen Rechenschritte und daher auch die benötigte Computerkapazität.

Die PC-Clusteranlage am Institut für Kernphysik ermöglicht eine effektive Rechengeschwindigkeit von 3,7 Teraflops, das sind 3,7 Billionen Rechenschritte pro Sekunde. Die Kosten für die Anlage belaufen sich auf 1,1 Millionen Euro, die im Rahmen des mittlerweile abgeschafften Hochschulbauförderungsgesetzes (HBFG) aus Bundes- und Landesmitteln sowie aus Mitteln der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt bereitgestellt wurden. Weitere 200.000 Euro fallen für den Umbau der Räume und die Kühlanlage an. Von den Simulationen erhofft sich Projektleiter Wittig ein tieferes Verständnis der Ergebnisse, die am Elektronenbeschleuniger MAMI C erzielt werden, der ebenfalls vom Institut für Kernphysik betrieben wird.

Hartmut Wittig ist seit 2005 Professor für Theoretische Kernphysik an der Johannes Gutenberg-Universität Mainz. Er studierte Chemie und Physik in Mainz und Oxford und promovierte 1992 mit einer Arbeit aus der theoretischen Teilchenphysik an der Universität Hamburg, wo 1998 auch die Habilitation erfolgte. Zwischen 1992 und 2001 arbeitete Wittig als wissenschaftlicher Mitarbeiter in Großbritannien an den Universitäten Southampton, Oxford und Liverpool. In diese Zeit fallen außerdem längere Aufenthalte als Gastwissenschaftler am Center for Computational Physics der Universität Tsukuba/Japan und am CERN in Genf. Von 2001 bis zu seiner Berufung nach Mainz 2005 war Wittig als Forscher in der Theoriegruppe am Deutschen Elektronen-Synchrotron/DESY in Hamburg tätig.

Kontakt und Informationen:
Univ.-Prof. Dr. rer. nat. Hartmut Wittig
Theoretische Kernphysik
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-26808, 0176 65132924
Fax 06131 39-25474
E-Mail: wittig@kph.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de
http://www.kph.uni-mainz.de/T/230.php

Weitere Berichte zu: Atomkern Kernphysik Rechner

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Lemgoer Forscher entwickeln Intelligente Assistenzsysteme für mobile Anwendungen in der Industrie
25.07.2017 | Hochschule Ostwestfalen-Lippe

nachricht Neue Anwendungsszenarien für Industrie 4.0 entwickelt
25.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie