Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungsrechner am Institut für Kernphysik simuliert Vorgänge im Innern der Bausteine des Atomkerns

08.05.2008
PC-Clusteranlage wird während vier Tagen installiert - Gesamtkosten von 1,3 Millionen Euro

Am Institut für Kernphysik der Johannes Gutenberg-Universität wird in dieser Woche eine Rechneranlage installiert, die herkömmliche Maßstäbe bei weitem sprengt.

Die PC-Clusteranlage besteht aus 2000 Prozessorkernen, die über ein Hochgeschwindigkeitsnetzwerk miteinander verbunden sind und so gemeinsam an einer Aufgabe arbeiten können. "Diese Anlage ist deutschlandweit der leistungsfähigste Rechner, der von einer Universität für ein einziges Forschungsprojekt in der Kern- und Teilchenphysik betrieben wird", sagt Projektleiter Univ.-Prof. Dr. Hartmut Wittig vom Institut für Kernphysik. Die Investitionen belaufen sich auf insgesamt 1,3 Millionen Euro.

Nach Inbetriebnahme wird der Großrechner den Wissenschaftlern für numerische Simulationen in der Teilchenphysik dienen, insbesondere auch als Begleitung der Experimente am neuen Elektronenbeschleuniger MAMI C der Universität. So soll das Wirken der absolut kleinsten Teilchen unserer Materie besser verstanden werden.

... mehr zu:
»Atomkern »Kernphysik »Rechner

Der Verbund von einzelnen Rechnern wird während vier Tagen vom 6. bis 9. Mai in einen eigens dafür umgebauten Raum am Institut für Kernphysik installiert. Für die 250 Rechenknoten - bestückt mit jeweils zwei Vierkern-Prozessoren von Intel - stehen zwei Schrankreihen bereit, die je 3,60 Meter lang und knapp zwei Meter hoch sind und mit Wasser gekühlt werden. Die Leistung der Klimaanlage entspricht der von 650 haushaltsüblichen Kühlschränken. Ist sie erst einmal in Betrieb, soll die PC-Clusteranlage den theoretischen Kernphysikern ganz neue Möglichkeiten eröffnen, um den Kräften nachzugehen, die in den Kernbausteinen wirken.

Das Interesse der Wissenschaftler gilt dem inneren Aufbau von Protonen und Neutronen, die den Atomkern bilden und ihrerseits aus noch kleineren Quarks bestehen. Der starke Zusammenhalt im Innern eines Atomkerns beruht auf der starken Wechselwirkung, eine der vier fundamentalen Kräfte in der Physik. Die Kräfte, die auf die Quarks wirken, entstehen durch sogenannte Gluonen, die zwischen den Quarks ausgetauscht werden.

Zur Beschreibung dieses Kräftespiels dient die Theorie der Quantenchromodynamik (QCD). "Tatsächlich lassen sich viele Prozesse an Hochenergiebeschleunigern wie etwa am CERN in Genf durch diese Theorie erklären", erklärt Wittig die Ausgangslage. "Wie sich jedoch die unmittelbaren Eigenschaften von Protonen und Neutronen aus der Quantenchromodynamik ableiten lassen, ist noch weitgehend unverstanden. Um dies zu untersuchen reichen Rechnungen mit Bleistift und Papier nicht mehr aus. Aber auch bei der numerischen Behandlung mittels großer Computer stößt man an Grenzen."

Diese Grenzen können nun mit der neuen Rechneranlage weiter hinausgeschoben werden. Um die QCD numerisch untersuchen zu können, setzt man Quarks und Gluonen auf ein vierdimensionales Raum-Zeit-Gitter, in Analogie zu einem herkömmlichen Kristall. Um den Verhältnissen in der Natur möglichst genau zu entsprechen, muss die "Maschengröße" des Gitters immer weiter verfeinert werden. Dies erhöht jedoch drastisch die Zahl der erforderlichen Rechenschritte und daher auch die benötigte Computerkapazität.

Die PC-Clusteranlage am Institut für Kernphysik ermöglicht eine effektive Rechengeschwindigkeit von 3,7 Teraflops, das sind 3,7 Billionen Rechenschritte pro Sekunde. Die Kosten für die Anlage belaufen sich auf 1,1 Millionen Euro, die im Rahmen des mittlerweile abgeschafften Hochschulbauförderungsgesetzes (HBFG) aus Bundes- und Landesmitteln sowie aus Mitteln der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt bereitgestellt wurden. Weitere 200.000 Euro fallen für den Umbau der Räume und die Kühlanlage an. Von den Simulationen erhofft sich Projektleiter Wittig ein tieferes Verständnis der Ergebnisse, die am Elektronenbeschleuniger MAMI C erzielt werden, der ebenfalls vom Institut für Kernphysik betrieben wird.

Hartmut Wittig ist seit 2005 Professor für Theoretische Kernphysik an der Johannes Gutenberg-Universität Mainz. Er studierte Chemie und Physik in Mainz und Oxford und promovierte 1992 mit einer Arbeit aus der theoretischen Teilchenphysik an der Universität Hamburg, wo 1998 auch die Habilitation erfolgte. Zwischen 1992 und 2001 arbeitete Wittig als wissenschaftlicher Mitarbeiter in Großbritannien an den Universitäten Southampton, Oxford und Liverpool. In diese Zeit fallen außerdem längere Aufenthalte als Gastwissenschaftler am Center for Computational Physics der Universität Tsukuba/Japan und am CERN in Genf. Von 2001 bis zu seiner Berufung nach Mainz 2005 war Wittig als Forscher in der Theoriegruppe am Deutschen Elektronen-Synchrotron/DESY in Hamburg tätig.

Kontakt und Informationen:
Univ.-Prof. Dr. rer. nat. Hartmut Wittig
Theoretische Kernphysik
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-26808, 0176 65132924
Fax 06131 39-25474
E-Mail: wittig@kph.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de
http://www.kph.uni-mainz.de/T/230.php

Weitere Berichte zu: Atomkern Kernphysik Rechner

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie