Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Satelliten kommunizieren über Laserstrahlung

02.05.2008
Tauschen Satelliten Daten aus, nutzen sie Radiowellen. Die Datenrate konnte jetzt auf das Hundertfache gesteigert werden – mit Lasern statt Radiosignalen. An Bord der Test-Satelliten war ein Diodenlaser-Pumpmodul, an dessen Entwicklung Fraunhofer-Forscher beteiligt waren.

Mit Lichtgeschwindigkeit sausten die Daten vom deutschen Satelliten TerraSAR-X zum US-Satelliten NFIRE und zurück, überbrückten fehlerfrei mehr als 5000 Kilometer Weltraum. Das Besondere an dem Weltraumtest, den die Firma Tesat-Spacecom kürzlich machte: Laser übermittelten Daten zwischen den Satelliten. Die erreichte Bandbreite ist hundertmal größer als bei der herkömmlichen Übertragung durch Radiowellen – die neue Datenmenge entspricht etwa 400 DVDs pro Stunde.

So könnten größere Datenpakete künftig über mehrere Satelliten hinweg übertragen werden – etwa um Bilddaten von Erdbeobachtungssatelliten zur Bodenstation zu senden. Das war bisher nicht möglich, da die Bandbreite der Radiowellen nicht ausreicht. Ein weiterer Vorteil der neuen Übertragung: Laser lassen sich besser fokussieren als Radiowellen, so können Daten gezielt versendet werden.

Die Laser, die die Kommunikation übernehmen, werden an Bord des Satelliten von Pumpmodulen aktiviert, die Forscher am Fraunhofer-Institut für Lasertechnik ILT in Aachen im Auftrag der Firma Tesat GmbH & Co. KG maßgeblich entwickelt haben. Die Arbeiten waren Teil eines vom Deutschen Zentrum für Luft- und Raumfahrt DLR finanzierten Programms. »Die Module müssen die Beschleunigung und Vibrationen des Satelliten beim Start aushalten sowie die unwirtlichen Bedingungen im Weltraum – etwa extreme Strahlung und hohe Temperaturunterschiede«, sagt Martin Traub, der die Entwicklungsarbeiten am ILT geleitet hat.

... mehr zu:
»Laser »Satellit

»Wir haben die Pumpmodule daher im Vorfeld unter enormen Bedingungen getestet: Temperaturen von -35°C bis 60°C, Beschleunigungen, die 1300-mal so hoch waren wie die Erdbeschleunigung, Bestrahlungen mit Gammastrahlen.« Für den Weltraumeinsatz dürfen die einzelnen Module weder zu groß noch zu schwer sein: Mit 5 x 5 x 2 Zentimetern sind sie kaum größer als eine Streichholzschachtel und mit 130 Gramm wiegen sie nicht viel mehr als eine Tafel Schokolade. »Das geringe Gewicht erreichen wir durch die Wahl der Materialien und ein aufwändiges Gehäuse: All das Material, das nicht unbedingt erforderlich ist, haben wir weggefräst«, sagt Traub. Die Herausforderung dabei: Trotz des geringen Gewichts muss die Wärme, die bei der Ausgangsleistung von mehreren Watt entsteht, abgeführt werden.

Den ersten Einsatz im Weltraum hat das Lasermodul gut überstanden. In einem nächsten Schritt sollen Laserterminals in einem geostationären Satelliten eingebaut werden.

Martin Traub | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Berichte zu: Laser Satellit

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics