Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanotechnologie ebnet Super-iPods den Weg

18.04.2008
Metalloxid-Schalter ermöglicht 150.000-mal höhere Speicherkapazitäten

Forscher der University of Glasgow haben einen molekülgroßen Schalter entwickelt, mit dem dramatisch höhere Speicherdichten möglich werden. Ein iPod etwa könnte 150.000 mal so viele Daten fassen wie derzeit, heißt es aus Glasgow.

Möglich macht das Nanotechnologie in Form extrem kleiner Schalter auf Metalloxid-Basis. Zwar ist es noch ein weiter Weg, bis die Technologie auch kommerziell zum Einsatz kommen wird. Die in Aussicht gestellte Steigerung der Speicherkapazität erscheint aber auch im Vergleich zu anderen Technologie-Ansätzen beachtlich.

"Der wesentliche Vorteil des molekularen Schalters ist die Informations- und Transistordichte in traditionellen Halbleitern", betont Lee Cronin, Chemiker an der University of Glasgow. Ein Chip, der heute Platz für 200 Mio. Transistoren bietet, könnte dann weit über eine Mrd. fassen. Auf einer Fläche von rund 2,5 mal 2,5 Zentimetern seien somit vier Petabit Speicherkapazität möglich. Das entspricht etwa 500.000 Gigabyte auf einer Speicherfläche, die derzeit rund 3,3 Gigabyte fassen könnte. Damit geben die Forscher eine mögliche Steigerung an, die rund um einen Faktor 150 über jener liegt, die sich IBM vom in Entwicklung befindlichen Racetrack Memory verspricht (pressetext berichtete: http://www.pte.at/pte.mc?pte=080411016 ).

"Im Prinzip ist es eine Eierschale aus Metalloxiden", beschreibt der Wissenschaftler Malcolm Kadodwala den Schalter im pressetext-Gespräch. Darin befinden sich zwei elektronenabgebende Gruppen in einem Abstand von lediglich 0,32 Nanometern. "Die Gruppen sind einander extrem nahe, aber nicht nahe genug, um unter normalen Umständen chemische Bindungen einzugehen", erklärt Kadodwala die Bedeutung des Abstands. Durch einen zusätzlichen Stimulus kommt es schließlich tatsächlich zu Bindungen und genau das erlaubt das für Speichervorgänge nötige Schalten.

Bis die Nanotech-Schalter in der Praxis für hohe Speicherkapazitäten sorgen, wird es aber noch dauern. "Dieser Durchbruch zeigt konzeptionell, dass das möglich ist", meint Cronin. Fragen etwa im Bereich der Fertigung oder der Adressierung seien aber erst zu klären. Bis die Technologie den Markt erreicht, werde es "zumindest ein Jahrzehnt" dauern, schätzt Kadodwala. Die Forschungsergebnisse zum Durchbruch im Bereich molekularer Schalter werden in der aktuellen April-Ausgabe Journal Nature Nanotechnology näher vorgestellt.

Thomas Pichler | pressetext.austria
Weitere Informationen:
http://www.gla.ac.uk
http://www.nature.com/nnano

Weitere Berichte zu: Nanotechnologie Speicherkapazität

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Intelligente Videoüberwachung für mehr Privatsphäre und Datenschutz
16.01.2018 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

nachricht Ein „intelligentes Fieberthermometer“ für Mikrochips
16.01.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften