Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von den Ameisen lernen

16.04.2009
Informatiker übertragen Strukturen aus der Natur auf technische Systeme

Ameisen sind schlau. Bereits nach kurzer Zeit finden sie den schnellsten Weg zur nächsten Futterquelle, nachdem anfangs noch viele Mitglieder der Kolonie Umwege gelaufen sind: Eine Ameisenstraße ist entstanden.

"Ameisen orientieren sich an ihren Nachbarn", erläutert Prof. Christian Müller-Schloer vom Fachgebiet System- und Rechnerarchitektur (SRA) des Instituts für Systems Engineering. Mit Duftstoffen markieren die Tiere die kürzeste Strecke, die immer mehr Ameisen nutzen, bis schließlich die langen Strecken ganz aussterben.

Ähnlich schlaue Systeme entwickeln Fische, die sich in Superschwärmen organisieren, um Feinde abzuschrecken, oder Vogelschwärme, die in keilförmigen Formationen den Windschatten ihrer Nachbarn ausnutzen, um energiesparend große Strecken zurückzulegen.

Die Anwendung dieser Konzepte der kollektiven Intelligenz auf den Bereich der Computerwissenschaften ermöglicht die Entwicklung neuer und effizienter Optimierungsstrategien. Prof. Müller-Schloer und sein Team übertragen Eigenschaften natürlicher Systeme - zusammen mit Partnern der Universität Karlsruhe - jetzt auf technische Systeme wie zum Beispiel Ampelanlagen für den Straßenverkehr oder intelligente Kamerasysteme. Konkret arbeiten die Informatikerinnen und Informatiker an selbstorganisierenden, lernenden und kooperierenden Lichtsignalanlagen-Steuerungen. Anhand von Sensoren wird das Verkehrsaufkommen gemessen, um so ein situationsangepasstes Verhalten zu erreichen. Zusätzlich lernt die Steuerung neue Verkehrssituationen. Wenn viele solcher "lernfähiger Ampeln" kooperieren, können sie sich dynamisch zu einer Grünen Welle zusammenfinden - ähnlich wie die Ameisen auf Futtersuche.

"Bisher werden Grüne Wellen vom Menschen entwickelt und statisch eingerichtet", erläutert Prof. Müller-Schloer. In Sondersituationen wie etwa nach dem Ende eines Fußballspiels kann aber plötzlich ein Parametersatz gebraucht werden, der noch nicht existiert. Ein Genetischer Algorithmus zusammen mit einem Simulator in der Ampel sucht nun einen optimierten Parametersatz für die neue Situation.

In einem theoretischer orientierten Projekt untersucht ein Forscherteam des SRA die Möglichkeiten, technische Systeme in Gruppen zu organisieren, sodass sie größere Aufgaben kooperativ lösen. In Computersimulationen wird dabei zum Beispiel die Interaktion von Jägern, Treibern und Beute nachgestellt. Ziel ist auch hier die Übertragung der Mechanismen auf technische Systeme wie die Steuereinheiten in einem Auto.

Die Projekte sind Teil des neuen Forschungsgebiets Organic Computing. Die Initiative wird von der Deutschen Forschungsgemeinschaft (DFG) im Schwerpunktprogramm Organic Computing seit 2005 für insgesamt sechs Jahre gefördert. Prof. Müller-Schloer ist einer der Initiatoren und Leiter des Schwerpunktprogramms, an dem derzeit bundesweit 20 Projekte beteiligt sind.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Prof. Christian Müller-Schloer vom Institut für Systems Engineering unter Telefon +49 511 762 19730 oder per E-Mail unter cms@sra.uni-hannover.de gern zur Verfügung.

Dr. Stefanie Beier | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics