Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abbildung von Viren in 3D gelungen

13.01.2009
100 Mio. Mal höhere Auflösung als gängige Magnetresonanztomografie

Forschern von IBM Research ist es in Zusammenarbeit mit dem Center for Probing the Nanoscale an der Stanford University gelungen, ein dreidimensionales Bild eines Tabakmosaikvirus zu erstellen. Dazu haben sie ein Verfahren genutzt, das sehr stark der klassischen Magnetresonanztomografie (MRT) ähnelt.

Mit einer räumlichen Auflösung von vier Nanometern ist die Methode aber rund 100 Mio. Mal genauer als gängige MRT-Geräte, so die Wissenschaftler. Die Technologie soll insbesondere der Erforschung von nanobiologischen Strukturen dienen und somit der medizinischen Forschung zugute kommen.

"Diese Technologie wird revolutionieren, wie wir Viren, Bakterien, Proteine und andere biologische Elemente untersuchen", sagt Mark Dean, Vice President of Strategy and Operations bei IBM Research. Die IBM-Methode baut dabei auf schon seit den 1990ern bekannte Mikroskopie-Ansätze auf, die winzige Kräfte auf atomarer Ebene messen. "Was mich schon immer interessiert hat ist, ob wir die Idee auch dreidimensional umsetzen können", sagt Dan Rugar, IBM Research Manager of Nanoscale Studies, gegenüber der New York Times. Das ist jetzt mithilfe der Rasterkraftmagnetmikroskopie (magnetic resonance force microscopy, MRFM), bei der magnetische Kräfte gemessen werden, gelungen. Das Virus wurde auf einem winzigen Silizium-Messarm durch ein Magnetfeld geführt, um eine Serie von 2D-Messungen zu gewinnen. Mithilfe eines geeigneten Bildrekonstruktionsverfahren konnten die Forscher dann eine 3D-Abbildung erstellen.

Das resultierende 3D-Image des Virus ist praktisch ein MRT-Bild, nur mit einer viel feineren räumlichen Auflösung. Im Vergleich zur Elektronenmikroskopie bietet das "Nano-MRI" den Vorteil, biologische Proben weniger zu schädigen. Außerdem löst sie das Problem, dass das klassische MRT laut Rugar nur sehr begrenztes Potenzial für mikroskopische Anwendungen hat. "Wir hoffen, dass Nano-MRI uns auf die Dauer eine direkte Bildgebung der internen Strukturen einzelner Protein-Moleküle und ganzer Molekül-Strukturen ermöglichen wird. Das ist der Schlüssel dazu, biologische Funktionen zu verstehen", meint daher der Wissenschaftler.

Thomas Pichler | pressetext.austria
Weitere Informationen:
http://www.stanford.edu/group/cpn
http://www.research.ibm.com

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Lemgoer Forscher entwickeln Intelligente Assistenzsysteme für mobile Anwendungen in der Industrie
25.07.2017 | Hochschule Ostwestfalen-Lippe

nachricht Neue Anwendungsszenarien für Industrie 4.0 entwickelt
25.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie