Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Sound für das Opernhaus Zürich

28.04.2016

Mit der Audiosoftware SpatialSound Wave von Fraunhofer lassen sich Klänge frei im Raum positionieren, so dass visuelles und akustisches Geschehen realistisch übereinstimmen. Im Züricher Opernhaus wird der dreidimensionale Klang seit Januar eingesetzt. Die Tontechniker passen Soundeffekte live an und vergrößern Räume akustisch.

Moderne Operninszenierungen leben von den Gesangskünsten der Hauptdarsteller, dem extravaganten Bühnenbild oder den Musikern des Orchesters. Gleichzeitig erschaffen die Regisseure mit Soundeffekten aus dem Lautsprecher zusätzliche Klangteppiche.


Mit SpatialSound Wave lassen sich Klänge einfach am Tablet im Raum positionieren. Im Opernhaus Zürich nutzen die Tontechniker die Software, um Soundeffekte und räumliche Akustik live einzuspielen.

Fraunhofer IDMT

»Gerade bei modernen Inszenierungen verlangen Intendanten und Regisseure, dass wir verschiedene Soundeffekte über die Tonanlage realisieren, verschiedene Räumlichkeiten schaffen und miteinander verbinden«, sagt Oleg Surgutschow, Tonmeister am Opernhaus Zürich.

In dem historischen Saal sind Lautsprecher auf insgesamt fünf Ebenen angebracht. »Eine umfangreiche und komplexe Infrastruktur, die historisch gewachsen ist. Mit klassischer Lautsprechertechnologie kommt man hier schnell an Grenzen, wenn man räumliche Klangeffekte erzielen will«, sagt René Rodigast vom Fraunhofer-Institut für Digitale Medientechnologie IDMT.

Seit Anfang 2016 ist die SpatialSound Wave-Technologie der Ilmenauer Forscher in Zürich im Einsatz. Der Vorteil für Tonmeister Surgutschow: Er kann Soundeffekte live bearbeiten und räumliche, dreidimensionale Klangwelten erschaffen – ohne die Tonanlage oder die Räumlichkeiten dafür verändern zu müssen.

Einzelne Klänge verteilt die SpatialSound Wave-Software nach den Verfahren der Wellenfeldsynthese. Dabei formen verschiedene Lautsprecher eine neue akustische Wellenform. Keine der Boxen spielt dasselbe Signal. Jede ergänzt die benachbarte und trägt ihren Teil zum Gesamtklang bei. »Wir müssen der Technologie vorher nur sagen, wo sich jede Box befindet«, erklärt Rodigast. »Mit Mikrofonen messen wir den Klang jedes einzelnen Lautsprechers ein.

Nicht Lautsprecher, sondern Klänge positionieren

SpatialSound Wave macht aus den akustischen Signalen der Boxen Audioobjekte. Ein Ton bekommt dadurch eine dreidimensionale XYZ-Achse, eine exakte Position zu einer bestimmten Zeit. So lassen sich Töne in einem Raum beliebig positionieren. Das berechnete Signal läuft zurück in die Lautsprecheranlage des Opernhauses. »Man ist nicht mehr an die Position des Lautsprechers gebunden«, sagt Rodigast.

Tonmeister Surgutschow muss sich nicht mehr um seine Lautsprecher kümmern, sondern nur noch um die Positionierung von Klängen. Die Lautstärke und die natürliche Verzögerung der Töne jedes einzelnen Lautsprechers, die für einen bestimmten Sound zuständig sind, werden automatisch über mathematische Formeln berechnet.

Dadurch, dass mehrere Lautsprecher zusammenwirken, können sie die Position der Schallquelle nachstellen. Jedes Audiosignal hat so eine feste Position im Raum. »Es entsteht ein stabiles akustisches Ereignis, das von jedem Platz im Opernhaus gleich wahrgenommen wird«, erklärt Rodigast.

Ursprünglich wurde das Opernhaus Zürich als Schauspielhaus, als Sprechtheater konzipiert. Es hat daher eine hervorragende Sprachverständlichkeit, aber zu wenig Nachhallzeit für Opernaufführungen. Diese kann mit SpatialSound Wave verlängert werden. Anstatt Audiosignale schicken die Forscher Reflexionen an bestimmte Stellen des Raums.

»Wir rechnen der originalen Klangquelle ein weiteres Signal hinzu und können Einfluss auf Zeitpunkt sowie Länge der Reflexionen nehmen«, sagt Rodigast. Dadurch wird der Raum größer. So als ob man die Wände nach hinten verschiebt.

»Mit der Software können wir Effekte und Raumklang im Live-Betrieb spontan anpassen. Bisher mussten wir alle Effekte vorprogrammieren. Die Audioobjekte lassen sich auch so positionieren, dass sie für den Hörer verschiedene Entfernungen haben können. Das heißt, ich kann die Effekte so platzieren, als ob sie außerhalb des Raums erklingen«, sagt Surgutschow.

Feintunen mit den Ohren

Im Opernhaus Zürich sind die Ränge klassisch angeordnet: Parkett, Parkett-Galerie, 1. Rang, 2. Rang inklusive Logen, Medaillon, Decke. »Die unterschiedlichen Etagen in unterschiedlicher Höhe machen es sehr herausfordernd, die Akustik optimal einzustellen: zum Beispiel an jedem Platz das gleiche Sounderlebnis zu schaffen oder bei Klangwelten, die sich durch den Raum bewegen«, sagt Surgutschow.

»Da reichen Mikrofone zum Messen der Lautstärke nicht aus. Das ist nur für die technische Annäherung. Viel wichtiger ist das Vorhören mit dem eigenen Ohr.« Wissenschaftler und Tontechniker wanderten Platz für Platz und Loge für Loge ab, spielten verschiedene Soundinhalte ab, bewegten Klangquellen an verschiedene Stellen.

»Man probiert unterschiedliche Einstellungen aus. Das kann keine Technik abnehmen«, sagt Rodigast. Es gab zwei Termine: An einem Tag wurde das System ausgemessen und in Betrieb genommen. »Akustisch optimiert haben wir das dann in zwei Nächten, nachdem die Toningenieure zuvor schon ein paar Wochen mit der Technologie gearbeitet hatten«, erzählt Rodigast.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2016/Mai/3D-sound-fuer-da...

Julia Hallebach | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz