Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3-D-Strukturen aus einer 2-D-Schablone bauen

05.10.2012
Licht trägt in der modernen Telekommunikation digitale Informationen in Millisekunden über Kilometer hinweg. Maßgeschneiderte optische Werkstoffe steuern dabei die Lichtsignale.
Im Fachjournal AFM berichten Forscher aus Berlin, Louvain und vom Karlsruher Institut für Technologie (KIT) nun über ein Herstellungsverfahren für photonische Kristalle, mit dem sich die optischen Eigenschaften durch mikrometergroße Strukturen einstellen lassen. Es verspricht schnell, günstig und einfach zu sein und nutzt teilweise das Selbstorganisationsprinzip. (DOI: 10.1002/adfm.201201138)

„Durch gezielte Strukturierung lassen sich die optischen Eigenschaften von Materialien ganz entscheidend beeinflussen“, erklärt Andreas Frölich vom Karlsruher Institut für Technologie. Silizium wird schon heute in der Telekommunikation in Bauteilen wie Filtern oder Umlenkern verwendet. Alle diese Bauteile sind jedoch bisher im wesentlich flach, also zweidimensional. Mit dreidimensionalen Bauteilen ließen sich jedoch ganz neuartige Konzepte realisieren. Dem Silizium, die dafür notwendige Struktur aufzuprägen, ist aber sehr aufwendig. Sie muss in allen drei Raumrichtungen regelmäßig sein und Details aufweisen, die mit rund einem Mikrometer Größe etwa einem Hundertstel der Dicke eines Haares entsprechen.

Tief unter die Siliziumoberfläche hat das SPRIE-Verfahren regelmäßige Strukturen im Mikrometerbereich erzeugt, an denen sich Licht brechen kann. (Foto: KIT / CFN)

„Unser neues Fertigungsverfahren SPRIE nutzt bewährte Technologie wie das Ätzen, innovative Verfahren wie Selbstorganisation und kombiniert diese auf kreative Weise“, freut sich Martin Wegener, Professor am Institut für Angewandte Physik und Institut für Nanotechnologie des KIT und Koordinator des DFG-Center for Functional Nanostructures (CFN). Das SPRIE-Verfahren strukturiert einfach, großflächig und dreidimensional Silizium. Zunächst wird auf der Siliziumoberfläche eine Lösung mit mikrometergroßen Kugeln aus Polystyren gegeben. Nach dem Trocknen ordnen diese sich selbst zu einer dichten, einlagigen Kugelschicht auf dem Silizium an. Nach einer Metallbeschichtung und dem Entfernen der Kugeln bleibt eine wabenförmige Ätzmaske auf der Siliziumoberfläche zurück.

„Diese Ätzmaske ist unsere zweidimensionale Schablone für die Konstruktion der dreidimensionalen Struktur“, sagt Frölich. Die freiliegenden Bereiche werden durch ein reaktives Plasmagas weggeätzt. Ob die Gasteilchen dabei überwiegend nur in die Tiefe oder gleichmäßig in alle Richtungen ätzen, lässt sich mit einem elektrischen Feld beeinflussen. „Zusätzlich können wir die Wände des Loches gezielt passivieren, also mit einer Polymerschicht vor weiterem Ätzen schützen.“

Durch wiederholtes Ätzen und Passivieren wachsen die Löcher der Ätzmaske in die Tiefe. Mit bis zu 10 Mikrometern sind sie mehr als zehnmal so tief, wie sie breit sind. Stimmt man sehr genau die beiden Prozessschritte und das elektrische Feld aufeinander ab, kann man die Struktur der Wände steuern. Statt eines einfachen Loches mit senkrechten, glatten Wänden, erzeugt jeder Ätzschritt eine kugelförmige Vertiefung mit gewölbter Oberfläche. Diese Wölbung ist der Baustein für die regelmäßigen, sich wiederholenden Strukturen bei neuartigen Lichtwellenleitern. „Optische Telekommunikation findet bei einer Wellenlänge von 1,5 Mikrometern statt. Deshalb erzeugen wir mit unserem Ätzverfahren entlang der Wand eine Riffelung, die ebenfalls im Mikrometerbereich liegt.“ Das Feld an dicht nebeneinanderliegenden und sehr tiefen, strukturierten Löchern wirkt in seiner Summe wie ein regelmäßiger Kristall, an dem Licht auf die gewünschte Art gebrochen wird.

Das Verfahren SPRIE (Sequential Passivation and Reactive Ion Etching) kann innerhalb von wenigen Minuten einen dreidimensionalen photonischen Kristall erzeugen, da es auf Prozesse zurückgreift, die heute schon in der Industrie üblich sind. Im Prinzip lässt sich damit aus einer frei wählbaren Maske eine dreidimensionale Struktur in Silizium erzeugen. Dies eröffnet neue Möglichkeiten, die an optische Bauteile gestellten Anforderungen in der Telekommunikation zu lösen.

Photonische Kristalle gibt es in verschiedensten Ausführungen. Je nach Bauart werden sie beispielsweise als Wellenleiter mit sehr kleinen Kurvenradien bei geringen Verlusten oder als extrem schmalbandige optische Filter und Multiplexer eingesetzt. In einigen Jahrzehnten wären vielleicht sogar Computer denkbar, die mit Licht statt Strom arbeiten. Neben dem KIT waren an der Entwicklung auch die belgische Université catholique de Louvain und die Humboldt Universität zu Berlin beteiligt.

Zur Publikation beim Journal Advanced Functional Materials:
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291616-3028

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail:schinarakis@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ergonomie am Arbeitsplatz: Kamera erkennt ungesunde Bewegungen
24.04.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht TU Ilmenau entwickelt Chiptechnologie von morgen
20.04.2017 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung