Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Quantenebene zur Autobatterie

03.04.2018

Neue Entwicklungen brauchen neue Materialien. Diese wurden bisher meist durch langwierige Versuche im Labor entwickelt. Forscher des Fraunhofer-Instituts für Algorithmen und Wissenschaftliches Rechnen SCAI in Sankt Augustin kürzen diesen zeit- und kostenintensiven Prozess mit ihrem »Virtual Material Design«-Ansatz und der speziell entwickelten Software Tremolo-X nun deutlich ab. Durch die Kombination von Multiskalenmodellen, Datenanalyse und maschinellem Lernen ist es möglich, optimierte Materialien deutlich schneller zu entwickeln. Auf der Hannover Messe vom 23. bis 27. April 2018 demonstriert Fraunhofer anschaulich, wie das virtuelle Materialdesign der Zukunft aussieht.

In nahezu jeder Branche werden für neue Entwicklungen neue Materialien benötigt. Beispiel Automobilindustrie: Bestand ein Automobil früher nur aus einer Handvoll Materialien, werden moderne Autos aus tausenden unterschiedlichen Materialien zusammengebaut – und der Bedarf steigt.


Auch winzige Objekte lassen sich detailiert abbilden: Hier das atomistische Modell des Tabakmosaikvirus.

© Fraunhofer SCAI


Bornitrid-Nanoröhrchen in einer Siliziumoxidmatrix. Darstellung von verstärktem Nanomaterial mit der Fraunhofer-Software.

© Fraunhofer SCAI

Ob es darum geht, ein Auto leichter zu machen, bessere Verbrauchswerte zu erzielen oder ob es um die Entwicklung von Batterien für Elektromotoren geht: Für jede neue Entwicklung muss das Material gefunden oder entwickelt werden, das genau die richtigen Eigenschaften hat. Doch die Suche nach dem richtigen Material ging bisher oft wie ein Ratespiel vonstatten. So wurden und werden die Kandidaten meist aus riesigen Werkstoffdatenbanken ausgesucht und getestet.

Diese Datenbanken geben zwar Aufschluss über bestimmte Leistungseigenschaften, gehen aber meist nicht genug in die Tiefe, um aussagekräftige Urteile darüber zu erlauben, ob ein Material genau die gesuchten Eigenschaften hat. Um das herauszufinden, müssen zahlreiche Labortests durchgeführt werden. Die Wissenschaftler des Fraunhofer SCAI haben einen anderen Ansatz gewählt.

Die Anforderungen an den Werkstoff werden bis zur inneren Struktur des Materials, also bis auf die atomare Ebene hinabgebrochen. Eine speziell entwickelte Software, Tremolo-X, berechnet dann, wie sich die Teilchen des Materials verhalten, wenn bestimmte physikalische Effekte auf sie einwirken. So kann darauf geschlossen werden, ob sich auf Basis dieser Teilchen ein Werkstoff mit den gewünschten Eigenschaften entwickeln lässt.

Virtuelle Vorhersagemodelle und atomistische Simulationen

»Unser Ziel ist es, die Suche nach dem passenden Werkstoff abzukürzen. Oft dauert dieser Prozess zehn bis zwanzig Jahre, was nicht nur zeit- sondern auch kostenintensiv ist,« sagt Dr. Jan Hamaekers vom Fraunhofer SCAI. »Die Idee ist, über virtuelle Prozesse die Anzahl der Kandidaten auszusieben, bis nur noch einige wenige übrig sind, die dann im Labor getestet werden.«

Dafür müssen zunächst die Anforderungen an das Material definiert werden. Beispielsweise wie schnell ein Werkstoff abkühlen muss oder welchen Belastungen er standhalten muss. Dies wird im Computer mit der Fraunhofer-Software auf zwei verschiedene Weisen simuliert: Auf atomarer- oder sogar auf Quantenebene werden virtuelle Teilchen simuliert. Wie verhalten sie sich? Wie reagieren die Teilchen untereinander?

Die andere Methode leitet aus vorhandenen Daten und Kenntnissen Vorhersagemodelle ab, die es ermöglichen, die Eigenschaften eines Materials vorauszusagen. »Ziel ist es, neue innovative Materialien und Moleküle mit effektiven Eigenschaften im virtuellen Computerlabor zu optimieren, zu kreieren und zu erforschen, um deren Struktur und Design vor der eigentlichen Synthese vorzuschlagen,« erklärt Hamaekers.

Multiskalen-Modellierung: Vom Atom zur Prozesskette

Deutlich wird das Vorgehen bei der Multiskalen-Modellierung, wie sie unter anderem in der chemischen Industrie zum Einsatz kommt. Hier wird zunächst auf Quantenebene die Chemie des Materials beschrieben. Diese Informationen werden auf immer gröbere Modelle übertragen, die Moleküle und deren physikalische Eigenschaften abbilden. »Will man zum Beispiel bei einer Lithium-Ionen-Batterie vorhersagen, wie gut das Elektrolyt ist bzw. wie schnell die Ionen diffundieren, simulieren wir zunächst die Teilchen auf der Quantenebene und sehen, was da für Reaktionen ablaufen.

Dann gehen wir mit diesen Informationen auf die nächste Ebene und erhalten Aufschluss über die Dynamik, also wie sich die Partikel auf atomarer Ebene bewegen. Von hier können wir dann noch eine Skala nach oben gehen und uns anschauen, wie sich das Elektrolyt in der makroskopischen Welt verhält. So erhalten wir präzise Einblicke in alle Abläufe und können falls nötig Prozesse anpassen oder verändern,« verdeutlicht Hamaekers.

Auf diese Weise können nicht nur neue Materialien entwickelt oder passende Materialien für bestimmte Anwendungen gefunden werden. Auch Prozesse lassen sich überprüfen und optimieren. Denn durch die Simulation der Prozessabläufe auf atomarer oder molekularer Ebene in einem virtuellen Reaktor lassen sich exakt die Stellen oder Parameter identifizieren, die optimiert werden können.

Auf der Hannover Messe 2018 zeigt das Fraunhofer SCAI anhand anschaulicher Beispiele, wie das Design von Materialien durch Modellierung, Datenanalyse und maschinelles Lernen optimiert werden kann.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2018/April/virtuelles-ma...
https://www.fraunhofer.de/de/presse/pressemappen/pressemappe-zur-hannover-messe-...

Michael Krapp | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal digitalisiert Fertigung - Produktion weltweit nach Industrie 4.0
25.04.2018 | Rittal GmbH & Co. KG

nachricht Silizium als neues Speichermaterial für die Akkus der Zukunft
25.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics