Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien präsentiert neue Biogas-Entschwefelungs-Methode

02.04.2014

Wenn aus Bioabfällen wertvolle brennbare Gase wie Methan gewonnen werden sollen, muss man entschwefeln. Auf der Hannover Messe 2014, in Halle 6 – Stand J10, präsentiert die TU Wien ein umweltfreundliches und kostengünstiges Verfahren dafür.

Wenn Biomasse vergärt, dann entsteht Biogas. Bevor man es allerdings in Motoren in Elektrizität umwandeln oder damit am Gasherd Suppe kochen kann, müssen zunächst unerwünschte Bestandteile entfernt werden, etwa Schwefelwasserstoff. An der TU Wien wurde nun eine Methode entwickelt, mit der sich Gase ganz unterschiedlicher Zusammensetzungen reinigen lassen, sodass wertvolles Methangas gewonnen wird. Bei der Hannover Messe 2014 wird die Erfindung nun präsentiert. 

Grenzwerte für Schwefel 

Für die Inhaltsstoffe von Biogas gibt es strenge Grenzwerte, etwa für Kohlendioxid oder Wasserdampf. Besonders streng sind die gesetzlichen Beschränkungen für Schwefelwasserstoff (H2S). Die Schwefelwasserstoffkonzentration muss für viele europäische Erdgasnetze auf unter 5 mg/m³ reduziert werden, das entspricht ca. 3,3 ppm. Ein Problem ist das insbesondere dann, wenn proteinreiche Substanzen zu Biogas vergoren werden – etwa tierische Abfallstoffe. Dann enthält das Gas oft mehr als das Hundertfache der erlaubten Schwefelmenge. 

„Diese Grenzwerte sind wichtig, denn bei der Weiterverarbeitung von Biogas könnte der Schwefel sonst schweren Schaden anrichten“, erklärt Prof. Michael Harasek vom Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften der TU Wien. „In Verbrennungsmotoren können Schwefelverbindungen zu Korrosion führen, sie sind Gift für Katalysatoren, und in höheren Konzentrationen können sie für Menschen gesundheitsschädlich sein.“ 

Verschiedene Entschwefelungsmethoden 

Entschwefelungsmethoden wurden auch schon bisher angewendet, doch sind sie meist mit schwerwiegenden Nachteilen verbunden: In manchen Anlagen scheidet man Schwefel an Eisen oder Zinkoxid ab – die Aufnahmekapazität dieser Materialien ist aber irgendwann erschöpft, dann müssen sie ausgetauscht werden. Bei anderen Anlagen, in denen Schwefelwasserstoff oxidiert und zu Schwefel, Sulfit oderSulfaten umgewandelt wird, können unerwünschte Nebenprodukte entstehen und die chemische Reaktion kann zu starker Erwärmung des Biogases führen, was im Umgang mit brennbaren Gasen gefährlich sein kann. 

„Bei unserer Methode wird der Prozess in zwei getrennte Schritte aufgeteilt“, erklärt Michael Harasek. Zuerst wird der Schwefelwasserstoff aus dem Gas in eine Flüssigkeit absorbiert, erst dann wird in einem separaten Reaktor der Schwefelwasserstoff durch Oxidation unschädlich gemacht. 

Um den Schwefelwasserstoff zu absorbieren, lässt man das Gas ganz kurz an Natronlauge vorbeiströmen. „Schwefelwasserstoff wird von Natronlauge sehr schnell absorbiert. Daher wird in einem kurzen Strömungsrohr der Schwefelwasserstoff aus dem Gas geholt – und zwar nur der - und alle anderen Bestandteile bleiben drin“, sagt Michael Harasek. In einem zweiten Schritt wird dann der Schwefel oxidiert, letztlich entstehen dann schwefelhaltige Salze, die wieder dem Kreislauf der Natur zugeführt werden können: Der Schwefel kommt als Sulfatdünger wieder aufs Feld. 

Die Methode der TU Wien ist sehr flexibel. „Unsere Anlage besteht aus mehreren hintereinandergeschalteten Stufen. Je nach der Zusammensetzung des Biogases kann ausgewählt werden, welche davon man verwendet“, erklärt Harasek. Dadurch kommt die Anlage mit ganz unterschiedlichen Gasgemischen zurecht – und das ist wichtig, denn die Zusammensetzung von Biogas ist genauso vielfältig wie die organischen Ausgangsprodukte, aus denen man es jeweils erzeugt. 

Die Erfindung ist bereits markttauglich und wurde vom Forschungs- und Transfersupport der TU Wien zum Patent angemeldet. Auf der Hannover Messe 2014 von 7. Bis 11. April wird sie erstmals öffentlich präsentiert. Mit der neuen Entschwefelungstechnik soll Biogas noch wirtschaftlicher werden und sich in der Industrie stärker durchsetzen als bisher. 

Neben der Entschwefelungstechnik wird die TU Wien weitere Komponenten für die „Bio-Raffinerie von morgen“ sowie „Ressourcenschonung durch neue Materialien und Oberflächendesign“ sowie „Innovative Lebensmittel-Qualitätstests“ in der Halle „IndustrialGreenTec“ auf der Hannover Messe präsentieren. 

Als RedakteurIn oder JournalistIn können Sie sich gerne schon jetzt für eine Presseführung durch den TU-Gemeinschaftsstand anmelden. Anmeldung bitte unter: forschungsmarketing@tuwien.ac.at 

Rückfragehinweis:

Prof. Michael Harasek

Institut für Verfahrenstechnik,

Umwelttechnik und

Techn. Biowissenschaften

Technische Universität Wien

Getreidemarkt 9, 1060 Wien

T: 01-58801-166 202

michael.harasek@tuwien.ac.at

Aussender:

Dr. Florian Aigner

Büro für Öffentlichkeitsarbeit

Technische Universität Wien

Operngasse 11, 1040 Wien

T: +43-1-58801-41027

florian.aigner@tuwien.ac.at

Energy & Environment ist – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies, Materials & Matter sowie Information & Communication Technology – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien.

Geforscht wird an der Erschließung neuer Energiequellen, der Versorgung mit Energie sowie deren Speicherung und effiziente Nutzung. Das technische Know how wird durch Expertise in den Bereichen Klima, Umwelt, Wirtschaft und Rohstoffe erweitert.

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Prüfvorgänge servicefreundlich gestalten
20.04.2016 | PHOENIX CONTACT GmbH & Co.KG

nachricht Modulare Steckverbinder in Snap-in-Rahmen
20.04.2016 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau