Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sorption energy storage and conversion for cooling and heating

18.03.2014

New materials and technologies are making it possible to utilize thermal energy more efficiently. Visit Hall 13 at the Hannover Messe (April 7-11) to find out how researchers from the Fraunhofer Energy Alliance are applying this to heat and cool spaces and industrial processes.

In many industrialized countries, city skylines are dominated by imposing glass façades and skyscrapers made of concrete and steel.


Zeolites are crystalline minerals with a porous structure that adsorbs other substances. When the material comes into contact with water vapor, it binds the steam within its pores, releasing heat in the process. © Fraunhofer IGB

There is a drawback to these magnificent structures, though – they often get very hot in the summer, so they mostly need elaborate and costly air conditioning systems. And these already account for some 14 percent of Germany’s annual energy consumption. Experts reckon that total cooling requirements in buildings will triple by 2020.

Cooling and heating using metal organic frameworks

... more about:
»Energy »IGB »ISE »compressor »heat »heating »pumps »zeolite

Thermally driven cooling systems are one possible alternative to traditional air conditioning. These systems use the evaporation of fluids such as water at low pressure to remove heat from the environment – an energy-efficient cooling method. Now researchers from the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg are working on innovative sorbents that can store a particularly large amount of water vapor.

To develop this material, researchers have turned to metal organic frameworks (MOFs). “The material is highly porous and can adsorb more than 1.4 times its own weight in water,” says Dr. Stefan Henniger from Fraunhofer ISE, describing one distinctive property of these sorbents.

MOFs can also be used in thermally driven heat pumps. Whereas electric heat pumps feature an electrical compressor, in these pumps an adsorbent performs the role of a “thermal compressor” while water serves as coolant. The gaseous coolant is adsorbed by the sorbent, thus leaving the gaseous phase.

The heat that results from this adsorption into the material’s hollow interior is transferred away by a heat exchanger and can be used for heating. For this to function, the sorbent must be applied to the surface of the heat exchanger in such a way that the coolant evaporates continuously until the sorbent is saturated. Once the maximum adsorption capacity is reached, driving heat is used to drive off the stored coolant and liquefy it. The heat of condensation released in the process can also be used for heating.

To capitalize on the full potential of MOFs, it is important not only for water vapor to have easy access to the inner surfaces and pore space of the material but also for heat transfer away from the material to be effective. To aid the process, experts at Fraunhofer ISE have developed a new coating technique, for which they applied for a patent.

This technique allows the new sorbents to be applied   to equipment such as heat exchangers without obstructing heat and mass transfer. The research is being funded by the German  Federal Ministry for Economic Affairs and Energy.

Heat from storage

Industrial facilities, power stations and biogas plants all make use of processes in which heat is essentially a waste product. Currently, hardly any of this heat energy is put to use – something that scientists at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart want to change. The researchers are working on developing and optimizing zeolite thermal storage systems.

Zeolites are crystalline minerals with a porous structure that adsorbs other substances such as water. Their internal surface area can be as much as 1000 square meters per gram. When the zeolite comes into contact with water vapor, it binds water molecules within its pores, releasing heat in the process. Drying out the material is a way to store heat; the energy this takes is released as heat as soon as water vapor is again adsorbed. Experts from Fraunhofer IGB are now developing technology to allow this heat storage technique to be used.

Thermochemical heat storage systems based on a combination of zeolites and water have the potential to amass up to 180 kilowatt hours of energy per cubic meter depending on the charging temperature and the application. To put this into perspective, traditional hot water energy storage systems normally have an energy density of less than 60 kilowatt hours per cubic meter.

However, zeolite sorptive thermal storage devices are in this stage of development relatively expensive. “From an economic and technical standpoint, we currently see this technology being implemented in industry,” says Mike Blicker, group manager, heat and sorption systems at Fraunhofer IGB.

Simone Ringelstein | Fraunhofer-Institut
Further information:
http://www.fraunhofer.de/en/press/research-news/2014/march/sorption-energy-storage.html

Further reports about: Energy IGB ISE compressor heat heating pumps zeolite

More articles from HANNOVER MESSE:

nachricht Measurement of components in 3D under water
01.04.2015 | Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

nachricht Artificial hand able to respond sensitively thanks to muscles made from smart metal wires
24.03.2015 | Universität des Saarlandes

All articles from HANNOVER MESSE >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie