Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sächsisches Spitzentechnologiecluster auf Hannover Messe 2012: Intelligente Werkstoffe mit Pfiff

20.04.2012
Bauteile in Bruchteilen von Sekunden schonend löten, intelligente Materialien, die spüren, wo der Schuh drückt, Wärmerohre, die Abwärme effizient für den Prozess zurückgewinnen und keramische Beschichtungen, mit denen sich Bauteile verlustfrei beheizen lassen. Das Sächsische Exzellenzcluster „ECEMP – European Centre for Emerging Materials and Processes Dresden“ stellt auf der Hannover Messe, vom 23. bis 27. April 2012, in Halle 2, Stand A30 seine Projekte vor.

Bei den von Forschern im ECEMP-Teilprojekt NanoWearResist entwickelten Lötfolien reicht ein Funke oder Laserpuls aus, um Bauteile in Bruchteilen von Sekunden zu verbinden. Diese sogenannten Reaktivmultischichten (RMS) sind aus Schichtstapeln von hunderten, manchmal bis zu einigen tausend nur wenige Nanometer dicken Einzelschichten zusammengesetzt.

Durch die Zündung kommt es zur Ausbildung einer fortschreitenden Reaktionsfront, die eine hohe Wärmemenge in einem räumlich eng begrenzten Gebiet freisetzt. Eine großflächige Erwärmung der Bauteile, die immer auch zu einer Störung des Ausgangsgefüges führt, ist dadurch nicht mehr notwendig. Regelmäßige Vorführungen am Stand veranschaulichen dies.

Die Wissenschaftler im ECEMP-Teilprojekt SmaComp entwickeln intelligente Materialien, die Veränderungen im Werkstoff detektieren und die genaue Position der Störung anzeigen. Mit Hilfe der sogenannten Smart Composites lassen sich Unfälle vermeiden. Denn wenn Bauteile im Ermüdungsfall schon kleinste Veränderungen melden, können sie rechtzeitig ausgetauscht werden. Zudem tragen sie zu einer deutlichen Kosten- und Ressourcenersparnis bei. Unnötige Wartungen lassen sich vermeiden und der „vorsorgliche“ Austausch bestimmter Bauteile entfällt. An Hand eines Demonstrators können die Messebesucher testen, wie eine Mehrschichtverbundplatte die Position von Defekten genau erkennt.

Ein wesentliches Instrument, um Ressourcen einzusparen und CO2-Emissionen zu reduzieren, besteht darin, die Abwärme aus industriellen Prozessen nicht einfach in die Umwelt abzuleiten, sondern sie für den Prozess zurückzugewinnen. Das gelingt mit sogenannten Wärmerohren, denn mit Wärmerohren lässt sich sehr effizient Wärme von einem Ort zum anderen transportieren. Die von den Wissenschaftlern im Teilprojekt CerHeatEx entwickelten keramischen Wärmerohre eignen sich für Temperaturen über 1000 Grad Celsius und aggressive, abrasive Atmosphären. Am Stand machen Wärmerohre aus Glas das Funktionsprinzip deutlich.

Bei Schnee und Eis kommt es immer wieder zu Zugverspätungen durch vereiste Fahrgestelle. Ließen sich Teile der Unterkonstruktion erwärmen, könnte das vermieden werden. Auch in vielen industriellen Prozessen müssen zum Beispiel Rohrleitungen mit Hilfe von Heizmatten warm gehalten werden. Wissenschaftler des Teilprojektes CeraDuct haben nun ein Verfahren zur Beschichtung von Oberflächen mit keramischen Heizleitschichten entwickelt. Da die Schichten direkt auf das Bauteil aufgebracht sind, lassen sich so weitgehend verlustfrei große Flächen beheizen. Ein Heizleiterdemonstrator am Stand zeigt den Temperaturverlauf einer Walze, die bis auf 300 °C erwärmt werden kann.

ECEMP – Vom Atom zum komplexen Bauteil
Das „ECEMP – European Centre for Emerging Materials and Processes Dresden“ ist ein Sächsischer Spitzentechnologiecluster. Die Wissenschaftler im ECEMP entwickeln Mehrkomponentenwerkstoffe mit den zugehörigen Technologien für die drei Zukunftsfelder Energietechnik, Umwelttechnik und Leichtbau. Die verwendeten Materialien gehören zu den drei Werkstoffklassen: metallisch (Stahl, Aluminium, Magnesium, Titan), nichtmetallisch-organisch (Kunststoffe, Naturstoffe) und nichtmetallisch-anorganisch (Keramik, Glas). Das ECEMP umfasst 14 Teilprojekte, an denen 40 Professuren der TU Dresden, der HTW Dresden sowie der TU Bergakademie Freiberg beteiligt sind und nutzt wesentlich deren interdisziplinäre Verknüpfung von Natur- und Ingenieurwissenschaften. Das ECEMP wird finanziert aus Mitteln der Europäischen Union (EFRE) und des Freistaates Sachsen.

ECEMP-Sprecher: Prof. Dr.-Ing. habil. Prof. E. h. Dr. h. c.
Werner A. Hufenbach, Institut für Leichtbau und Kunststofftechnik
ilk@ilk.mw.tu-dresden.de, Tel. +49 (0)351 463 38142
Fax +49 (0)351 463 38143
ECEMP-Pressestelle: Dr. Silke Ottow, silke.ottow@ecemp.tu-dresden.de
Tel. +49 (0)351 463 38447, Fax +49 (0)351 463 38449

Kim-Astrid Magister | idw
Weitere Informationen:
http://ecemp.tu-dresden.de/

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie