Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit flexiblen Drucksensoren Geräte stufenlos steuern

26.04.2016

Silikon ist so weich, dass es auch dem Druck eines Fingers nachgibt. Fraunhofer-Forscher haben Sensoren aus diesem flexiblen Material hergestellt, mit denen Geräte stufenlos bedient werden können. Auf der Hannover Messe zeigen sie einen Handschuh, der Druckkräfte misst, sowie ein Autolenkrad, mit dem sich Musik, Licht und Lüftung per Fingerdruck steuern lassen (Halle 2, Stand C16/C22).

Das Multifunktionslenkrad ist mittlerweile Standard in vielen Autos. Der Fahrer steuert Tempomat oder Musikanlage, ohne dass er die Hände vom Lenkrad nehmen muss. Die Schalter sind jedoch unflexibel und können oft nur zwischen »Ein« und »Aus« beziehungsweise »Weiter« und »Zurück« unterscheiden.


Mit flexiblen Drucksensoren Druckkräfte messen.

Fraunhofer ISC

»Das liegt daran, dass sie aus starren Materialien, hartem Kunststoff, Metall oder Keramik bestehen«, erklärt Dr. Holger Böse vom Würzburger Fraunhofer-Institut für Silicatforschung ISC. Der technisch-wissenschaftliche Leiter des Center Smart Materials (CeSMa) beschäftigt sich mit intelligenten Materialien, deren mechanische Eigenschaften sich elektrisch oder magnetisch steuern lassen.

Die Sensoren des ISC senden elektrische Impulse aus, um Dinge zu steuern. Zu diesem Zweck sind sie wie ein elektrischer Kondensator aufgebaut: Zwei Elektrodenschichten aus leitfähigem Silikon unten und oben, eine isolierende Folienschicht dazwischen. Drückt man auf diesen Kondensator, passiert jedoch zunächst: nichts.

»Die elektrische Kapazität – Ladung geteilt durch angelegte Spannung – ist die entscheidende Größe. Bei einem herkömmlichen Kondensatoraufbau ist die Presswirkung allerdings so gering, dass wir sie kaum messen, geschweige denn zur Steuerung nutzen können«, schildert Böse. Damit das Drücken auch Wirkung zeigt, haben die Forscher weitere Silikonschichten auf die Folie aufgetragen.

So pressen zum Beispiel zwei weitere Folien von oben und unten zusätzlich auf die Folie in der Mitte. Beide sind nicht glatt, sondern haben von den Forschern ein besonderes Profil verpasst bekommen. Durch ihr spezielles Kondensatordesign konnten die Forscher eine physikalische Eigenschaft des Silikons nutzen, die bislang nur beobachtet wurde, wenn man eine Silikonfolie mit dehnbaren Elektrodenschichten in die Länge zieht:

Ihre Geometrie wird verändert, die Fläche größer und die Silikonschicht dünner. Das führt dazu, dass ihre elektrische Kapazität ansteigt. »Das haben wir jetzt von Zug- auf Druckkräfte übertragen«, erklärt Böse.

Wie die Druckkraft wirkt, hängt stark davon ab, wie die Profile auf den Folien und wie die Elektroden angebracht werden. Die elektrische Kapazität der Sensoren ist jeweils unterschiedlich. Die Forscher können die Unterschiede nutzen und so das Design der Sensoren individuell an verschiedene Geometrien und Empfindlichkeiten anpassen. Das Silikon stellen die Wissenschaftler aus industriellen Vorprodukten oder nach eigener Rezeptur her.

»Unsere chemische Abteilung kann das Silikon für die Sensoren je nach Kundenwunsch maßschneidern. Je nachdem, welche Eigenschaften gewünscht sind, variieren wir die chemische Zusammensetzung und die technische Form der Sensoren«, sagt Böse.

Vom bayerischen Wirtschaftsministerium gefördert

Die Drucksensoren sind innerhalb einer Fördermaßnahme des bayerischen Wirtschaftsministeriums entstanden, um smarte Materialien zu entwickeln und in die Anwendung zu bringen. Das Projekt ist jetzt im siebten Jahr und endet 2016.

»Auf Fachtagungen war die Resonanz der Autobranche auf die neue Technik sehr positiv«, berichtet Böse. »Jetzt gilt es, die Technologie raus aus dem Labor zu bringen und an unterschiedliche Anwendungen anzupassen. In einigen Jahren könnte es dazu konkrete Produkte geben.«

Da es sich um flexible, weiche Sensoren handelt, kann man diese in alle möglichen Arten von Umgebungen integrieren. »Die Anwendungsgebiete sind nahezu unendlich groß«, sagt Böse. Beispiel Auto: Bedienelemente kommen hier beispielsweise im Lenkrad, der Mittelkonsole, als Fensterheber oder im Sitz vor. Sie könnten die alten starren Schalter ersetzen oder an neuen Stellen angebracht werden: in der Fahrzeugdecke oder in der Türverkleidung.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2016/april/mit-flexiblen-...

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften