Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jülich stellt Nanopositionierer und Weltrekord-Brennstoffzellen vor

19.04.2010
Über 20 000 Stunden Betriebszeit für Jülicher Brennstoffzelle / Positionierer arbeitet nanometergenau und rüttelfrei

Brennstoffzellen erzeugen effizient und klimaschonend Strom für Auto und Haus. Dank der Jülicher Forschung sind sie in Zukunft auch besonders langlebig: Auf der Hannover Messe (19. - 23. April, Halle 27 Stand H61) wird eine Technologie vorgestellt, die Laufzeiten von über 20.000 Stunden, also fast drei Jahren, ermöglichen soll. Daneben zeigt das Forschungszentrum Jülich (in Halle 2, Stand C38) einen Nanopositionierer, der dank eines neuartigen Antriebs Objekte in Nanometerdimensionen rüttelfrei bewegt.

Brennstoffzellen: Ein weiterer Schritt zur Marktreife

"Unsere Brennstoffzelle liefert im Schnitt eine Leistung von 0,4 Watt pro Quadratzentimeter Elektrolytfläche, etwa das Doppelte, was heute in kommerziellen Systemen vorgesehen ist", sagt Dr. Robert Steinberger-Wilckens, Leiter des Projekts "Brennstoffzelle" am Forschungszentrum. Für den Einsatz in Fahrzeugen reichen bereits 5.000 bis 10.000 Stunden aus, für eine stationäre Stromversorgung sind aber Betriebszeiten von über 40.000 Stunden notwendig. "Wir sind dem Ziel, solche Betriebszeiten zu realisieren, wieder ein gutes Stück nähergekommen", freut sich Steinberger-Wilckens.

Die ausführliche Pressemeldung finden Sie unter:
http://www.fz-juelich.de/portal/lw_resource/datapool/pdfs/2010-04-16_Hannover_FC.pdf

Links zur Brennstoffzelle:

Portal zur Jülicher Brennstoffzellenforschung:
http://www.fuelcells.de
http://www.fz-juelich.de/ief/ief-3
Nanometergenau und rüttelfrei auf Position
Der Jülicher Nanopositionierer kann auf Bruchteile eines Atoms genau arbeiten, also zum Beispiel die Spitze eines Rastersondenmikroskops auf 0,1 Nanometer (10 Millionstel Millimeter) genau steuern. Gleichzeitig kann er eine Strecke von mehreren Millimetern abfahren. Diese beiden Eigenschaften ermöglichen es auf einer großen Fläche präzise zu arbeiten. Im Gegensatz zur bisherigen Technik, der Trägheitstranslation, ist er jedoch komplett rüttelfrei und nicht anfällig für Schwingungen mit hohen Frequenzen. Seine kompakte Bauweise von rund einem Kubikzentimeter macht ihn stabil und er ist weitreichend einsetzbar, etwa im Vakuum, bei tiefen Temperaturen oder bei hohen Magnetfeldern. Mögliche Einsatzgebiete für den Jülicher Nanopositionierer sind die Kontaktierung von Nanoobjekten oder das Justieren von Linsen, Spiegeln und Blenden in optischen Versuchen.
Die ausführliche Pressemeldung finden Sie unter:
http://www.fz-juelich.de/portal/lw_resource/datapool/pdfs/2010-04-16_Hannover_nano.pdf

Links zum Nanopositionierer:

Portal zum Jülicher Nanopositionierer mit Bildern und Videos:
www.fz-juelich.de/ibn/nanopositioner
Pressekontakt:
Kosta Schinarakis, Tel. 02461 61-4771, E-Mail: k.schinarakis@fz-juelich.de
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie und Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jülich sowohl langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaften und Technik erarbeitet als auch konkrete technologische Anwendungen. Mit rund 4 400 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den größten Forschungszentren Europas.

Kosta Schinarakis | FZ Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Die GFOS stellt auf der HMI aus: Mit gfos.MES in Richtung Industrie 4.0
20.02.2018 | GFOS mbH

nachricht Hannover Messe 2018: Wasserschwert statt Laserschwert
01.02.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics