Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genau dosiert, statt „ein“ und „aus“: Druckluft-Ventil aus einfacher Folie ist 500-mal effizienter

25.03.2015

Forscher der Universität des Saarlandes haben eine neue Art von Schaltern und Ventilen entwickelt, die nur aus hauchdünner Folie bestehen. Sie kommen ohne seltene Erden und Kupfer aus, sind günstig herzustellen, extrem leicht und verbrauchen Energie nur, wenn sie schalten. Das macht sie 500-mal energieeffizienter als Elektromagnet-Ventile. Und: Sie können nicht nur ein- und ausschalten, sondern jede gewünschte Stellung halten. Hierdurch kann etwa Druckluft allein per Ventil exakt dosiert werden, was die Ingenieure der Forschergruppe von Professor Stefan Seelecke auf der Hannover Messe vom 13. bis 17. April am saarländischen Forschungsstand (Halle 2, Stand B 46) mit ihrem Prototypen zeigen.

Von handelsüblicher Frischhaltefolie unterscheidet sie sich auf den ersten Blick nicht wesentlich. Aber die unscheinbare Silikonfolie hat es in sich: Sie ist die Basis einer neuen Generation von Schaltern, Ventilen oder sogar motorlosen Pumpen.


Ingenieur Marc Hill, wissenschaftliche Mitarbeiter von Stefan Seelecke, hat den Prototyp des Druckluft-Ventils aus Folie im Rahmen seiner Doktorarbeit mitentwickelt.

Foto: Oliver Dietze

Ingenieure aus dem Forscherteam von Professor Stefan Seelecke an der Saar-Universität und am Zentrum für Mechatronik und Automatisierungstechnik haben die hauchdünne Folie umfunktioniert zu einem wandelbaren technischen Bauteil. Sie drucken hierzu jeweils einen schwarzen Ring auf beide Seiten der Folie.

„Diese elektrisch leitfähige Schicht ermöglicht uns, eine elektrische Spannung an die Folie anzulegen“, erläutert Stefan Seelecke. Wenn die Ingenieure das elektrische Feld verändern, macht die Folie das, was sie wollen: Sie zieht sich zusammen, wölbt sich vor, zieht sich auseinander, hebt und senkt sich. Sie ist also „elektroaktiv“, deshalb auch ihre Bezeichnung als „elektroaktives Polymer“.

Die besondere Wandlungsfähigkeit nutzen die Ingenieure jetzt im Prototyp eines Druckluft-Ventils. Übliche Elektromagnet-Ventile schalten zwar sehr schnell, mit ihnen lässt sich jedoch die abgegebene Druckluftmenge nur bedingt verändern. Auch verbrauchen diese Energie, um eine bestimmte Position zu halten. „Dies ist beim elektroaktiven Polymer anders. Es verbraucht Energie nur, wenn es tatsächlich die Ventil-Position ändert. Im Vergleich zu Magnet-Ventilen bedeutet das bis zu 500-mal weniger Energieverbrauch“, erklärt Ingenieur Marc Hill. Der wissenschaftliche Mitarbeiter von Stefan Seelecke hat den Prototyp im Rahmen seiner Doktorarbeit mitentwickelt.

Besonderer Vorteil: Mit dem Folienventil ist es möglich, Druckluft exakt nach Bedarf zu dosieren. „Wir setzen die Folie selbst zugleich als Positions-Sensor ein, wodurch wir das Ventil präzise steuern können“, erläutert Professor Seelecke. Die Forscher können hierfür die einzelnen Stellungen der Folie – also wie sie sich gerade verformt – genau entsprechenden Werten der elektrischen Kapazität zuordnen.

„Anhand von Messwerten können wir anschließend also exakte Rückschlüsse auf die Form der Folie, ihre so genannte mechanische Auslenkung, ziehen. Dadurch hat das Bauteil zugleich sensorische Eigenschaften“, sagt Marc Hill. In der Regelungseinheit können auf diesem Wege Bewegungsabläufe genau berechnet und programmiert und so das Ventil präzise nach Bedarf bewegt werden – und zwar in jeder gewünschten Zwischenstellung zwischen „ein“ und „aus“.

Auf der Hannover Messe zeigen die Ingenieure ihr Verfahren am Prototyp des Druckluft-Ventils.

Kontakt:
Prof. Dr. Stefan Seelecke (Lehrstuhl für Unkonventionelle Aktorik),
Tel. 0681 302 71341; E-Mail: stefan.seelecke@mmsl.uni-saarland.de
http://www.mmsl.uni-saarland.de/
Benedikt Holz, Tel.: 0681 302-71345, E-Mail: benedikt.holz@mmsl.uni-saarland.de
Marc Hill, Tel.: 0681/302-71350; E-Mail: m.hill@mechatronikzentrum.de

Der saarländische Forschungsstand ist während der Hannover Messe erreichbar unter Tel.: 0681-302-68500

Hintergrund:
Am ZeMA in Saarbrücken arbeiten Saar-Uni, Hochschule für Technik und Wirtschaft sowie Industriepartner zusammen, um Mechatronik und Automatisierungstechnik im Saarland zu stärken sowie den Technologietransfer zu fördern. In zahlreichen Projekten wird industrienah entwickelt und neue Methoden aus der Forschung in die industrielle Praxis umgesetzt. http://www.zema.de/

Der saarländische Forschungsstand wird organisiert von der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes (KWT). Sie ist zentraler Ansprechpartner für Unternehmen und initiiert unter anderem Kooperationen mit Saarbrücker Forschern. http://www.uni-saarland.de/kwt

Claudia Ehrlich | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie