Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Funke, der Materialien verbindet – ECEMP auf der Hannover Messe

04.03.2013
Mit Hilfe von Nanopartikeln und Nanoschichten lassen sich oft erstaunliche Effekte erzielen.

So haben Wissenschaftler im ECEMP-Teilprojekt NanoWearJoin unter Leitung von Prof. Eckhard Beyer, vom Institut für Fertigungstechnik der TU Dresden, auf Basis sogenannter reaktiver Nanometermultischichten (RMS) ein effektives, milli-sekundenschnelles Fügesystem entwickelt, mit dem die zu fügenden Bauteile praktisch nicht mehr erwärmt werden müssen.

Zudem ist es ihnen gelungen, keramische Nanopartikel auf einfache Weise so zu modifizieren, dass sie sich in Metalle einbetten lassen und so deren mechanischen und physikalischen Eigenschaften deutlich verbessern können. Die Wissenschaftler stellen ihr Projekt vom 08. bis zum 12. April 2013 auf der Hannover Messe, Halle 2, Stand A32, vor.

Bei konventionellen Fügeverfahren, wie beim Löten oder Schweißen, werden die Bauteile lokal sehr stark erhitzt. Das führt einerseits zu Veränderungen im Ausgangsgefüge, andererseits treten beim Abkühlen häufig hohe Spannungen auf, die das Fügeergebnis negativ beeinflussen. Ein besonders schonendes Fügeverfahren beruht auf der Verwendung sogenannter reaktiver Nanometermultischichten (RMS). RMS sind aus Schichtstapeln von Hunderten, manchmal bis zu einigen Tausend, nur wenige Nanometer dicken Einzelschichten zusammengesetzt und aus mindestens zwei Materialien aufgebaut.

Gezündet werden die Reaktivmultischichten durch einen elektrischen Funken oder einen Laserpuls. Dadurch kommt es zur Ausbildung einer fortschreitenden Reaktionsfront. So wird in Bruchteilen von Sekunden eine hohe Temperatur in einem räumlich eng begrenzten Gebiet erzeugt und eine auf die Schichten aufgebrachte Lotschicht aufgeschmolzen. Durch die besonders kurze Reaktionsdauer ist der Wärmeeintrag in den Grundwerkstoff sehr gering. Daher eignen sich RMS zum spannungsarmen Fügen von Materialien mit sehr unterschiedlichen Wärmeausdehnungskoeffizienten und für besonders wärmeempfindliche Materialpaarungen.

Keramische Nanopartikel besitzen Eigenschaften, die viele Leichtmetalle nicht haben: Eine sehr große mechanische Festigkeit sowie, je nach Art der Partikel, eine besonders gute thermische und elektrische Leitfähigkeit. Gelingt es, Nanopartikel in Bauteile aus Aluminium oder Magnesium einzubringen, kann deren Beanspruchung deutlich erhöht werden. Die Integration der Nanopartikel in Metalle ist jedoch nicht trivial, sie lassen sich von Metallschmelzen nicht benetzen. Daher haben die Wissenschaftler auf Basis kostengünstiger Reaktanden und Lösungsmitteln ein einfaches Verfahren entwickelt, um die Nanopartikel zunächst mit einer Metallschicht zu überziehen. Die Schicht dient als Dispersionsvermittler zur metallischen Schmelze. Die vorbehandelten Partikel können dann in Bauteiloberflächen integriert werden. Oft genügt es dabei, nur die Bereiche der Werkstücke mit Nanopartikeln zu behandeln, die besonders stark beansprucht werden.

ECEMP – Vom Atom zum komplexen Bauteil

Die Wissenschaftler im Spitzentechnologiecluster„ECEMP – European Centre for Emerging Materials and Processes Dresden“ entwickeln ressourcenschonende Werk-stoffe, Technologien und Prozesse für die drei Zukunftsfelder Energietechnik, Umwelttechnik und Leichtbau. Dabei bündeln sie die Kompetenzen in allen Materialklassen (Metalle, Kunststoffe, Naturstoffe und Keramik) und der gesamten Wertschöpfungskette (Materialdesign (CMS), Entwicklung, Herstellung, Verarbeitung und Anwendung von Bauteilen). Das ECEMP umfasst 14 Teilprojekte, an denen 40 Professuren aus 23 Instituten der TU Dresden, der TU Freiberg, der HTW Dresden und der Wissenschaftsorganisationen HG, FhG, MPG und LG beteiligt sind. Das ECEMP wird finanziert aus Mitteln der Europäischen Union und des Freistaates Sachsen (EFRE – Europäischer Fonds für regionale Entwicklung).

ECEMP-Sprecher:
Prof. Dr.-Ing. habil. Prof. E. h. Dr. h. c. Werner A. Hufenbach
TU Dresden
Institut für Leichtbau und Kunststofftechnik
ilk@ilk.mw.tu-dresden.de
Tel.: +49 (0)351 463 38142
Fax: +49 (0)351 463 38143

Informationen für Journalisten:
Dr. Silke Ottow
TU Dresden
ECEMP
silke.ottow@ecemp.tu-dresden.de
Tel.: +49 (0)351 463 38447
Fax: +49 (0)351 463 38449

Kim-Astrid Magister | Technische Universität Dresden
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal digitalisiert Fertigung - Produktion weltweit nach Industrie 4.0
25.04.2018 | Rittal GmbH & Co. KG

nachricht Silizium als neues Speichermaterial für die Akkus der Zukunft
25.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics